-













































:

:

.

6.

. , . . , , . , .

, . fk(r) k r. , , , . . , , .

, fk(r) . :

1. r . vk k. t tvk. , r t r tvk 0:

fk(r, t) = fk(r tvk, 0). (35)

 ,  -

fk/t]diff = vk×fk/r = vk×Ñfk. (36)

2. k ,

(37)

k-, (35)

(38)

,

(39)

( fk/k k- ࠠ Ñk).

3. . . fk

fk/t]scatt = ∫{ fk' (1 fk) fk (l fk')}Q(k, k') dk'. (40)

k k' fk. fk k, (1 fk') . , k' k, fk; fk'(1 fk). , k'. k k' , , Q (k, k'), , k , k' . , k' k, .

: r k fk(r) , . .

fk/t]scatt + fk/t]field + fk/t]diff = 0. (41)

, , . f0k, .

, , .

gk = fk f0k. (42)


f0k = 1/{exp[(E k z)/kT] + 1} (43)

. , f0k , ? , T(r),

gk(r)=fk(r) f0k{3T(r)}. (44)

, , - ,

ògk(r)dk = 0. (45)

(42) (41) (7.2) (7.5),

vk×fk /r e /ħ(E + 1/c[vk ´ H]) ×fk /k = fk /t]scatt , (46)


vk×fk /T ÑT e /ħ(E + 1/c[vk ´ H]) × f0k /k = fk /t]scatt + vk×gk /r + e /ħ(E + 1/c[vk ´ H]) ×gk /k. (47)

(43)

(f0 /E)vk×{( E (k) z) / T×ÑT + e (E 1/e×Ñz)} = fk /t]scatt + vk×gk /r + e /ħc[vk ´ H] ×gk /k. (48)

. (E×gk /k) E2, . vk [vk ´ H], ; .

(40) (48), , - gk(r) . gk(r) ,
. .

7.

E, . (40)

( f0 /E)vk×eE = (f0 /t)]scatt = ò(fk fk¢)Q(k,k¢)dk¢= ò(gk gk¢)Q(k,k¢)dk¢ (49)

gk.

, , :

fk /t]scatt = gk/t (50)

t. gk

gk /t = gk/t, (51)

gk(t) = gk(0)e t / t . (52)

(50) (49),

gk = ( f0 /E) tvk×eE (53)

,

(54)

,

òf0kevk(r)dk º 0,

k- .

( f0 /E) d- (E z), . ,

(55)

J = s×E, (56)


s .

(57)

, , . , E J , (55)

(vk vk × E) = v2xE, (58)


1/3 , v2E.

(59)

L = tv. (60)

.

(. 97), fk, (7.8). (53), gk .

.97. ; .

, vk×eE>0, . . , . .

(61)

, k-po (et/ħ)E. . , . - ; .

, , ( t). T = 0, . , .

, (61)

fk = f0(Ek + etvkE), (62)

k

dEk = etvkE. (63)

, , vk E t. . , , dv ;

dv(E/v) = evEt, (64)


m

dv(E/v) = evEt / mv. (65)

n,

J = nedv, (66)

, (65), (66) (56),

s = ne2t/m. (7.33)

, (67) (59) ; . , , . , , .

(59) , , , , . Bi.

, (67) . .

s = n||m (68)


m = |e|t/m (69)

. ,

s = nh || mh + ne || me . (70)

(68), , (54), f . , t ; (69)

(71)

N(E) . ,

me= |e|te /me (7.38)

. . , . T . , , , t (EF).


2012 , .