Главная Рефераты по рекламе Рефераты по физике Рефераты по философии Рефераты по финансам Рефераты по химии Рефераты по хозяйственному праву Рефераты по цифровым устройствам Рефераты по экологическому праву Рефераты по экономико-математическому моделированию Рефераты по экономической географии Рефераты по экономической теории Рефераты по этике Рефераты по юриспруденции Рефераты по языковедению Рефераты по юридическим наукам Рефераты по истории Рефераты по компьютерным наукам Рефераты по медицинским наукам Рефераты по финансовым наукам Рефераты по управленческим наукам Психология и педагогика Промышленность производство Биология и химия Языкознание филология Издательское дело и полиграфия Рефераты по краеведению и этнографии Рефераты по религии и мифологии Рефераты по медицине Рефераты по сексологии Рефераты по информатике программированию Краткое содержание произведений |
Реферат: Азот и фосфорРеферат: Азот и фосфорМинистерство общего и профессионального образования Российской федерации Воронежский государственный университет Химический факультет Курсовая работа «Азот и фосфор» Кафедра общей химии
Автор: Юденко В. И. Научный руководитель: к.х.н. Малевская Л. А.
Воронеж 1999 Оглавление Введение……………………………………………………………..3 Азот История открытия азота ………………………………………………..3 Особенности азота………………………………………………………4 Распространение азота в природе……………………………………...4 Получение азота…………………………………………………………5 Физические свойства …………………………………………………...5 Химические свойства…………………………………………………...5 Водородные соединения азота…………………………………………6 Кислородные соединения азота………………………………………..10 Соединения с неметаллами…………………………………………….13 Соединения с металлами……………………………………………….14 Применение азота и азотсодержащих веществ ………………………14
Фосфор История открытия фосфора……………………………………………15 Особенности фосфора………………………………………………….15 Природные соединения и получение фосфора……………………….15 Физические и химические свойства…………………………………..16 Фосфорсодержащие кислоты и их соли………………………………17 Соединения с неметаллами……………………………………………19 Соединения с металлами………………………………………………20 Применение фосфора и фосфорсодержащих веществ………………20 Литература…………………………………………………………..21
Введение Пятая группа Периодической системы включает два типических элемента азот и фосфор – и подгруппы мышьяка и ванадия. Между первым и вторым типическими элементами наблюдается значительное различие в свойствах. В состоянии простых веществ азот – газ, а фосфор – твердое вещество. Эти два вещества получили большую область применения, хотя когда азот впервые был выделен из воздуха его посчитали вредным газом, а на продаже фосфора удавалось заработать большое количество денег (в фосфоре ценили его способность светится в темноте).
АзотИстория открытия азотаВпервые азот был более или менее изучен Даниэлем Резерфордом. Выполняя задание своего учителя Д. Блека, открывшего взаимодействие двуокиси углерода с известковой водой, Д. Резерфорд исследовал, какое изменение претерпевает воздух, после того как в нем жило и погибло живое существо. Ответ на этот вопрос гласил: дыхание животных не только превращает здоровый воздух в «фиксируемый воздух» (в двуокись углерода), но после того, как фиксируемая порция поглощена раствором едкого кали, остающаяся часть, хотя и не вызывает осадка с раствором гашеной извести, гасит пламя и губит жизнь. Такова первая характеристика азота, слагающаяся исключительно из отрицательных признаков: азот противопоставляется двуокиси углерода, сходной с ним по отрицательным признакам (оба газа не поддерживают горение и дыхание). Почти одновременно азот был изолирован и изучен двумя другими выдающимися учеными Г. Кавендишем и К. Шееле, оба они в отличие от Д. Резерфорда поняли, что азот – это лишь выделенная из воздуха, заранее присутствующая в нем его составная часть. В особенности примечательно сообщение Г.Кавендиша, найденное в его неопубликованных рукописях с пометкой: «послано Пристли». «Я переводил обыкновенный воздух из одного сосуда через раскаленные угли в другой, потом через свежий горящий уголь – в следующий сосуд, поглощая каждый раз образующийся фиксируемый воздух (углекислый газ) кусковой известью. Удельный вес полученного газа оказался лишь незначительно разнящимся от удельного веса обыкновенного воздуха: из обоих газов азот несколько легче воздуха. Он гасит пламя и делает обыкновенный воздух неспособным возбуждать горение, так же как и фиксируемый воздух (CO2), но в меньшей степени». Оставалось только дать новому газу название. Никто в те времена не придавал такого значения номенклатуре, как А. Лавуазье, и никто не совершил (вторично) такой грубой номенклатурной ошибки, как присвоение азоту его имени «безжизненный». Это наименование все же закрепилось за азотом во французской и русской литературе; в англосаксонских странах предпочли для азота название Nitrogen – «рождающий селитру», немцы же дали азоту название Stickstoff – «удушающая материя».
Особенности азота У атома азота на один электрон больше, чем у атома углерода; согласно правилу Гунда, этот электрон занимает последнюю вакантную 2р-орбиталь. Атом азота в невозбужденном состоянии характеризуется тремя вырожденными 2р-электронами при наличии двух спаренных электронов на 2s-орбитали. Три неспаренных электрона на 2р-орбитали, прежде всего, ответственны за трехковалентность азота. Именно поэтому характеристическим летучим водородным соединением является аммиак, в котором атом азота образует три ковалентные связи по обменному механизму с тремя атомами водорода. У азота нет возможности перехода электронов в возбужденное состояние, так как ближайшие орбитали при n = 3 слишком высоки по энергии. Поэтому максимальная валентность азота равна четырем. При этом три ковалентные связи могут быть образованы по обменному механизму, а одна – по донорно-акцепторному. Однако азот в состоянии N+ может образовывать все четыре связи по обменному механизму. Азот проявляет большое разнообразие степеней окисления: -3, -2, -1, 0, +1, +2, +3, +4 и +5. Наиболее часто встречаются производные от степеней окисления -3,+5 и +3 (NH3, HNO3 и NaNO2). Распространение азота в природе Среди всех элементов, образующих земной шар, один азот (если не считать инертных газов) как бы избегает образовывать химические соединения и входит в состав земного шара преимущественно в свободном виде. А так как азот в свободном состоянии - газ, основная его масса сосредоточена в газовой оболочке той сложной химической системы, которую представляет собой земной шар, - в его атмосфере. Содержание азота в земной коре в виде соединений составляет 0,01 массовой доли, %. Атмосфера более чем на 75 массовых долей, % состоит из газообразного азота, что равно ~4*1015 т. Связанный азот образует минералы в форме нитратов: чилийская NaNO3, индийская KNO3 и норвежская Ca(NO3)2 селитры. Азот в форме сложных органических производных входит в состав белков, в связанном виде содержится в нефти (до 1,5 массовой доли, %), каменных углях (до 2,5 массовой доли, %). Молекула N2 является самой устойчивой формой его существования, чем обусловлена так называемая проблема связанного азота. Потребление связанного азота растениями и животными приводит к обеднению окружающей среды соединениями азота. Этот дефицит должен восполняться искусственным путем, поскольку естественное пополнение запасов связанного азота (грозы, деятельность азотобактерий и т. п.) не компенсирует его потери. Исключительное значение в решении проблемы связанного азота имеют две реакции: синтез аммиака и его каталитическое окисление.
Получение азота В технике азот получают фракционной перегонкой жидкого воздуха. При этом в первую очередь отгоняются наиболее летучие вещества - азот и благородные газы. Последние не мешают в случае применения азота для создания инертной среды в химических и других производствах. От примесного кислорода (несколько процентов) азот освобождают химически, пропуская его через систему с нагретой медью. При этом практически весь кислород связывается в CuO. В лаборатории азот получают нагреванием смеси крепких растворов хлорида аммония и нитрита натрия: NH4Cl + NaNO2 = N2 + 2H2O + NaCl или разложением нитрита аммония при нагревании: NH4NO2 = N2 + 2H2O Наиболее чистый азот получается при термическом разложении азидов металлов, например: 2NaN3 = 2Na + 3N2 Физические свойства Азот - газ без цвета и запаха. Точка кипения жидкого азота -195,8 град. С, точка плавления твердого азота -210,5 град. С. Твердый азот получается в виде порошка и в виде льда. Азот плохо растворим в воде и органических растворителях. В 1 л воды при 0 град. С растворяется всего 23,6 см3 азота. 1 л азота при нормальных условиях весит 1,2505 г. Химические свойства Азот находиться в верхнем правом углу периодической системы, в котором сосредоточены неметаллы с наибольшими сродствами к электронам. Поэтому он должен быть мало склонен выступать в качестве электроположительного элемента, а как элемент электроотрицательный должен уступать в химической активности только немногим неметаллам, в первую очередь правее его стоящим кислороду и фтору. Между тем химическая характеристика азота, как и исторически первые сообщения о нем, всегда начинается не с положительных признаков, а с отрицательных: с подчеркивания его химической инертности. Первая причина химической инертности азота в обычных условиях - особо прочное сцепление его атомов в молекуле N2. N2=2N-711 кДж. При комнатной температуре азот взаимодействует только с литием, с образованием нитрида лития: N2 + 6Li = 2Li3N, с другими металлами азот взаимодействует при нагревании: N2 + 3Ca = Ca3N2. В реакциях взаимодействия азота с металлами, азот проявляет окислительные свойства, также окислительные свойства он проявляет при взаимодействии с водородом (при нагревании, повышенном давлении и в присутствии катализатора): N2 + 3H2 = 2NH3. Азот также взаимодействует и с другими неметаллами, проявляя при этом восстоновительные свойства: N2+O2 = 2NO, N2 + 3F2 =2NF3. Существуют и другие соединения азота с электроотрицательными элементами, но они являются неустойчивыми, и многие из них, особенно хлористый азот и йодистый азот, взрывчаты.
Водородные соединения азота Летучим характеристическим соединением азота является аммиак. По значимости в неорганической химической индустрии и неорганической химии аммиак - самое важное водородное соединение азота. По своей химической природе он представляет собой нитрид водорода H3N. В химическом строении аммиака sp3-гибридные орбитали атома азота образуют три -связи с тремя атомами водорода, которые занимают три вершины чуть искаженного тетраэдра. Четвертая вершина тетраэдра занята неподеленной электронной парой азота, что обеспечивает химическую не насыщенность и реакционноспособность молекул аммиака. При обычных условиях аммиак - бесцветный газ с резким запахом. Он токсичен: раздражает слизистые оболочки, а острое отравление вызывает поражение глаз и воспаление легких. При охлаждении до -33 град. С аммиак сжижается, а при -78 град. С затвердевает. В жидком и твердом аммиаке между молекулами действуют водородные связи, вследствие чего аммиак обладает рядом экстремальных свойств по сравнению с другими водородными соединениями элементов пятой группы главной подгруппы. Вследствие полярности молекул и достаточно высокой диэлектрической проницаемости жидкий аммиак является хорошим неводным растворителем. В жидком аммиаке хорошо растворяются щелочные и щелочно - земельные металлы, сера, фосфор, йод, многие соли и кислоты. Вещества с функциональными полярными группами в жидком аммиаке подвергаются электролитической диссоциации. По растворимости в воде аммиак превосходит любой другой газ: при 0 град. С 1 объем воды поглощает 1200 объемов газообразного аммиака. Прекрасная растворимость аммиака в воде обусловлена возникновением межмолекулярных водородных связей. При этом возможны два механизма возникновения водородных связей между молекулами аммиака и воды:
Поскольку донорная способность молекул аммиака выражена сильней, чем у воды, а связь О-Н более полярна по сравнению с полярностью связи N-Н в аммиаке, межмолекулярная водородная связь образуется по первому механизму. Таким образом, физико-химические процессы в водном растворе аммиака можно представить следующим образом.
Возникновение гидроксид - ионов создает щелочную реакцию раствора аммиака в воде. Константа ионизации невелика (рК 5). В условиях пониженных температур из водных растворов аммиака можно выделить кристаллогидраты NH3 Н2О (tпл=-77 град. С), 2NН3 Н2О (tпл=-78 град. С) и NН3 2Н2О (tпл=-97 град. С). Кристаллогидраты состоят из цепей молекул аммиака и воды, сшитых водородными связями в трехмерную сетку, в которых отсутствуют структурные мотивы NН4ОН. Это означает, что так называемый гидроксид аммония не существует как химический индивид, как нет гидроксида оксония ОН3ОН и гидроксида фторония FН2ОН. Таким образом, водные растворы аммиака обладают основными свойствами не за счет образования мнимого соединения NН4ОН, а вследствие исключительно выраженной донорной активности атома азота в NН3. Равновесие в водном растворе аммиака можно сместить вправо добавлением кислоты. При этом в растворе образуются соли аммония. Они получаются также при непосредственном взаимодействии газообразных веществ: NН3 + НСl = NН4Сl Сам ион аммония и большинство его солей бесцветны. В твердом состоянии соли аммония образуют структуры, характерные для веществ со значительной долей ионной составляющей связи. Поэтому они хорошо растворяются в воде, почти сполна подвергаются электролитической ионизации. Структура иона NН4+ - тетраэдрическая, в которой все вершины тетраэдра заняты атомами водорода, а азот находится в его центре. Положительный заряд равномерно распределен между всеми атомами водорода. По свойствам соли аммония похожи на соли калия вследствие близости ионных радиусов NН4+ (0,142 нм) и К+ (0,133 нм). Существенная разница заключается только в том, что соли калия, образованные сильными кислотами, не подвержены гидролизу, а соли аммония в водных растворах гидролизуются вследствие слабо выраженных основных свойств аммиака. Соли аммония отличаются невысокой термической устойчивостью. Природа конечных продуктов термического разложения солей аммония в основном определяется свойствами аниона. Если анион происходит от кислоты - окислителя, то имеет место окисление аммиачного азота, например: NН4NО3 = N2О + 2Н2О В этой реакции аммиачный азот отдает 4 электрона нитратному азоту, а потому последний выступает как окислитель. С другой стороны, эта реакция представляет собой пример внутримолекулярного конпропорционирования. Для аммонийных солей от кислот, не являющихся окислителями, при их термическом разложении выделяется аммиак и кислота: (NН4)3РО4 = 3NН3 + Н3РО4 При обработке солей аммония щелочами выделяется аммиак: 2NН4Сl + Са(ОН)2 = 2NН3 + СаСl2 + 2Н2О Эта реакция может служить простым способом получения аммиака в лаборатории. В промышленности аммиак получают прямым синтезом из компонентов - простых веществ. На воздухе аммиак не горит, но в атмосфере кислорода он окисляется до свободного азота: 4NН3 + 3О2 = 2N2 + 6Н2О При каталитическом окислении реакция идет иначе: 4NН3 + 5О2 = 4NО + 6Н2О Аммиак выступает как восстановитель и в реакциях с другими окислителями. Реже аммиак выступает как окислитель, например: Nа + NН3 = NаNН2 + 1/2Н2 В этой реакции металлический натрий вытесняет водород из жидкого аммиака. При этом водород аммиака понижает свою степень окисления, и аммиак играет роль окислителя. С другой стороны, подобные реакции иллюстрируются проявлением аммиаком кислотных свойств. Амиды металлов, например NаNН2, являются солями аммиака, отвечающими его кислотной функции. Совершенно очевидно, что кислотная природа у аммиака выражена значительно слабее, чем у Н2О и НF. Константа кислотной ионизации ничтожно мала (рКа 35), а потому соли аммиака как кислоты в воде нацело гидролизуются: NaNH2 + H2O = NaOH + NH3 Кислотной функции аммиака отвечают не только амиды, но и имиды и нитриды металлов. Если в амидах замещен один атом водорода (NаNН2) , в имидах - два (Li2NН), то в нитридах - все три (AlN). При осторожном окислении аммиака мягким окислителем, например гипохлоридом натрия, получают другое водородное соединение аммиака - гидразин или диамид: 2NН3 + NаОСl = N2Н4 + NаСl + Н2О Диамид представляет собой бесцветную, легко испаряемую токсичную жидкость с высокой диэлектрической проницаемостью(Е=52 при 25 град.С) По химическим свойствам гидразин во многом похож на аммиак. В водных растворах гидразина также возникают водородные связи, как и в случае аммиака. При взаимодействии гидразина с 1 молекулой воды с участием водородной связи образуется катион [N2Н5]+, а с двумя - [N2Н6]2+. Существование гидроксидов этих катионов как индивидуальных веществ не установлено, тем не менее, известны два типа солей гидразина, например N2Н5Сl и N2Н6Сl2. При восстановлении раствора азотной кислоты атомарным водородом получается гидроксиламин: НNО3 + 6Н = NН2ОН + 2Н2О Гидроксиламин - бесцветные кристаллы (tпл = 33 град.С), термически нестойкие, выше 100 град.С взрываются. Водные растворы гидроксиламина более устойчивы. В растворе также возникают межмолекулярные водородные связи, и устанавливается динамическое равновесие: Однако основная функции гидроксиламина выражена еще слабее (рКb 8), чем у аммиака и гидразина. С кислотами гидроксиламин дает соли гидроксиламмония. Наиболее известным препаратом является хлорид гидроксиламмония [NН3ОН]Сl. Растворы солей гидроксиламмония более устойчивы, чем твердые вещества, и имеют кислую реакцию вследствие гидролиза. Поскольку атом азота в гидроксиламине имеет степень окисления -1, он может функционировать и как окислитель, и как восстановитель. Но для него более характерны восстановительные свойства, особенно в щелочной среде. Среди водородных соединений азота наименьшая отрицательная степень окисления азота представлена в азиде водорода НN3. В этом соединении степень окисления азота равна - 1/3. Необычайная степень окисления обусловлена структурной неравноценностью атомов азота в этом веществе. С позиции МВС эта структурная неравноценность может быть представлена схемой: Главное в этой схеме - делокализация П-связей вдоль прямой, соединяющей атомы азота. Правомерность схемы доказывается расстоянием между атомами азота 1-2 и 2-3, являющимися промежуточными между длинами связей Водный раствор НN3 называется азотистоводородной кислотой. Она получается окислением гидразина азотистой кислотой: N2Н4 + НNО2 = НN3 + 2Н2О По силе она приближается к уксусной. В разбавленных растворах азотистоводородная кислота медленно диспропорционирует: НN3 + Н2О = N2 + NН2ОН В безводном состоянии она может взорваться не только при нагревании, но и от сотрясения: 2НN3 = 3N2 + H2 Смесь азотистоводородной и концентрированной соляной кислот способна растворять даже благородные металлы. Соли азотистоводородной кислоты - азиды - по растворимости в воде похожи на галогениды. Так, азиды щелочных металлов хорошо растворяются в воде, Аg N3, Рb(N3)2 и Нg(N3)2 - плохо. Азиды щелочных и щелочно-земельных металлов при медленном нагревании устойчивы вплоть до плавления. Азиды тяжелых металлов легко взрываются при ударе: Рb(N3)2 = Рb + 3N2 Кислородные соединения азота С кислородом азот образует ряд оксидов: N2О и NО - бесцветные газы, N2О3 голубое твердое вещество (ниже -100 град.С), NО2 - бурый газ, N2О4 - бесцветный газ, N2О5 - бесцветные кристаллы. Оксид N2О (закись азота, "веселящий газ", поскольку он обладает наркотическим действием) получают термическим разложением нитрата аммония или гидроксиламмония: [НN3ОН]NО2 = N2О + 2Н2О (внутримолекулярное конпропорционирование) Оксид азота (+1) - эндотермическое соединение. Однако при комнатной химически температуре мало активен. При нагревании его реакционная способность сильно возрастает. Он окисляет водород, металлы, фосфор, серу, уголь, органические и другие вещества, например: Сu + N2О = N2 + СuО При нагревании N2О выше 700 град.С одновременно с реакцией разложения протекает его диспропорционирование: 2N2О = 2N2 + О2; 2N2О = 2NО + N2 С водой оксид азота (+1) не взаимодействует, хотя известна кислота Н2N2О2, в которой азот тоже имеет степень окисления +1. Эта кислота называется азотноватистой, и ей приписывается структура с двумя равноценными атомами азота:
Свободную азотноватистую кислоту можно получить следующим образом: NН2ОН + НNО2 = Н2N2О2 + Н2О Она хорошо растворяется в воде, но кислота слабая. Азотноватистая кислота весьма неустойчива, при незначительном нагревании взрывается: Н2N2О2 = N2О + Н2О Соли Н2N2О2 - гипонитриты и гидрогипонитриты - в воде сильно подвержены гидролизу. Большинство гипонитритов мало растворимо в воде, намного лучше растворяются гидрогипонитриты. Четные степени окисления для азота сравнительно мало характерны. К числу таких соединений относится оксид азота (+2). Молекула NО содержит нечетное число электронов и, по существу, представляет собой обладающий малой активностью радикал. В молекуле одна ковалентная по донорно-акцепторному механизму и две П-связи. Несмотря на эндотермичность и положительную величину энергии Гиббса образования NО из простых веществ, оксид азота (+2) не распадается на элементы. Дело в том, что, согласно ММО, порядок связи в NО довольно высок и равен 2,5. Молекула NО прочнее молекулы О2, так как у первой на разрыхляющей МО П2р* всего один электрон, а у второй - два электрона. В лаборатории оксид азота (+2) чаще всего получают действием разбавленной кислоты на медные стружки: 3Сu + 8НNО3 = 3Сu(NО3)2 + 2NО + 4Н2О На воздухе оксид азота (+2) мгновенно окисляется: 2NО + О2 = 2NО2 Окисляется NО и галогенами, образуя нитрозилгалогениды: 2NО + Г2 = 2NОГ При взаимодействии с восстановителями NО восстанавливается до N2О, N2, NН2ОН, NН3 в зависимости от восстановительной способности партнера и условий провидения процессов Водный раствор оксида азота (+2) нейтрален. Никаких соединений с водой он не образует, хотя известны соли (гипонитраты) не выделенной в свободном состоянии азотноватой кислоты Н2N2О3, в которой азот также имеет степень окисления +2. Оксид азота N2О3 существует в твердом состоянии (ниже -100 град.С). В жидком и парообразном состояниях оксид азота (+3) в значительной степени диссоциирован за счет диспропорционирования: N2О3 NО + NО2 Получают N2О3 охлаждением эквимолярных количеств NО и NО2. А равномерный ток смеси нужного состава получается при взаимодействии 50%-ной НNО3 с оксидом мышьяка (+3): 2НNО3 + Аs2О3 = 2НАsО3 + NО + NО2 Оксиду азота (+3) отвечает известная лишь в растворе неустойчивая азотистая кислота НNО2. Получить ее можно растворением в воде равных объемов NО и NО2 в воде: NО + NО2 + Н2О = 2НNО2 При хранении и нагревании НNО2 диспропорционирует: 3НNО2 = НNО3 + 2NО + Н2О Наиболее характерные для нее окислительные свойства: НNО2 + 2НI = I2 + 2NО + 2Н2О Однако сильные окислители переводят азотистую кислоту в азотную: 5НNО2 + 2КмnО4 + 3Н2SО4 = К2SО4 + 2МnSО4 + 5НNО3 + 3Н2О Оксид азота (+4) получают растворением меди в концентрированной азотной кислоте: Сu + 4НNО3 = Сu(NО3)2 + 2NО2 + 2Н2О Он является хорошим окислителем, в нем горят фосфор, сера, уголь и некоторые органические вещества. Выше 150 град.С диоксид азота начинается разлагаться: 2NО2 = 2NО + О2 Поскольку молекула диоксида азота с неспаренным электроном по существу представляет собой радикал, она легко димеризуется: 2NО2 N2О4 Димер бесцветен и диамагнитен в отличие от окрашенного в красно-бурый цвет и парамагнитен. Диоксид азота при взаимодействии с водой диспропорционирует: 2NО2 + Н2О = НNО2 + НNО3 При растворении NО2 в горячей воде получается азотная кислота, ибо первоначально образующаяся азотиста кислота диспропорционирует с выделением оксида азота (+2) и образованием азотной кислоты. Оксид азота (+5) имеет молекулярную структуру только в газовой фазе. В твердом состоянии N2О5 имеет структуру, образованную ионами NО2+ и NО3-. N2О5 - легко возгоняющиеся кристаллы, причем испаряются молекулы. Таким образом, при возгонке оксида азота (+5) ионы NО2+ и NО3- объединяются в молекулы N2О5 . Получают оксид азот (+5) дегидратацией азотной кислоты с помощью Р2О5 или окислением NО2 озоном: 2НNО3 + Р2О5 = 2НРО3 + N2О5; 6NО2 + О3 = 3N2О5 Оксид азота (+5) является энергичным окислителем, многие реакции с его участием протекают весьма бурно. При растворение в воде дает азотную кислоту: N2О5 + Н2О = 2НNО3 Азотная кислота - одна из сильных кислот. Молекула НNО3 и нитрат-ион имеют строение, представленное схемами Безводная азотная кислота представляет собой бесцветную летучую жидкость. При хранении (особенно на свету) и при нагревании частично разлагается: 4НNО3 = 4NО2 + 2Н2О + О2 Так называемая "дымящая" азотная кислота (красного цвета) представляет собой раствор выделяющегося диоксида азота в концентрированной НNО3. В лаборатории НNО3 получают нагреванием нитрата натрия с серной кислотой: NaNО3 + Н2SО4 = НNО3 + NaНSО4 В промышленности азотную кислоту получают из аммиака. Сначала аммиак каталитически окисляют до оксида азота (+2), который далее окисляется до NО2. Затем оксид азота (+4) растворяют в горячей воде и получают азотную кислоту. Азотная кислота является сильным окислителем и окисляет почти все металлы и неметаллы. Последние, как правило, переводятся ею в производные высшей степени окисления, например: S + 6НNО3 = Н2SО4 + 6NО2 + 2Н2О Из металлов только золото, платина, осмий, иридий, ниобий, тантал и вольфрам устойчивы к действию азотной кислоты. Некоторые металлы (например, железо, алюминий, хром) пассивируются концентрированной азотной кислотой. Окислительными свойствами обладают и водные растворы азотной кислоты. Обычно процесс восстановления НNО3 протекает в нескольких параллельных направлениях, и в результате получается смесь различных продуктов восстановления. Природа этих продуктов, их относительное содержание в смеси зависят от силы восстановителя, концентрации азотной кислоты и температуры. Более сильным окислителем является смесь концентрированных азотной и соляной кислот - "царская водка". Она растворяет даже золото и платину, которые не растворяются в азотной, а тем более в соляной кислоте. Ее окислительная активность обусловлена снижением редокс - потенциала растворяющихся металлов, т. е. усилением их восстановительных свойств за счет образования прочных хлоридных комплексов: Аu + НNО3 + 4НСl = Н[АuСl4] + NО + 2Н2О Соли азотной кислоты - нитраты - известны почти для всех металлов. Большинство из них бесцветны и хорошо растворяются в воде. В кислых водных растворах нитраты являются более слабыми окислителями, чем азотная кислота, а в нейтральной среде вообще не обладают окислительными свойствами. Сильными окислителями они являются в расплавах, когда происходит разложение с выделением кислорода. Оксид азота (+5) при взаимодействии со 100%-ным пероксидом водорода образует пероксоазотную (надазотную) кислоту: N2О5 + 2Н2О2 = 2НNО4 + Н2О Пероксоазотная кислота нестойка, легко взрывается, водой полностью гидролизуется: О Н-О-О-N + Н2О = Н2О2 + НNО3 О Соединения с неметаллами Известны все галогениды азота NГ3. Трифторид NF3 получают взаимодействием фтора с аммиаком: 3F2 + 4NН3 = 3 NН4F + NF3 Трифторид азота - бесцветный токсичный газ, молекулы которого обладают пирамидальным строением. У основания пирамиды дислоцированы атомы фтора, а вершина занята атомом азота с неподеленной электронной парой. К различным химическим реагентам и к нагреванию NF3 весьма устойчив. Остальные тригалогениды азота эндотермичны, а потому неустойчивы и реакционноспособны. NCl3 образуется при пропускании газообразного хлора в крепкий раствор хлорида аммония: 3Cl2 + NН4Сl = 4НСl + NCl3 Трихлорид азота представляет собой легколетучую (tкип = 71 град.С) жидкость с резким запахом. Небольшой нагрев или удар сопровождается взрывом с выделением большого количества теплоты. При этом NCl3 распадается на элементы. Тригалогениды NBr3 и NI3 еще менее стабильны. Производные азота с халькогенами очень неустойчивы вследствие их сильной эндотермичности. Все они плохо изучены, при нагреве и ударе взрываются. Соединения с металлами Солеобразные нитриды получают прямым синтезом из металлов и азота. Водой и разбавленными кислотами солеобразные нитриды разлагаются: Мg3N2 + 6N2 = 3Мg(ОН)2 + 2NH3 Са3N2 + 8НСl = 3СаСl2 + 2NH4Сl Обе реакции доказывают основную природу нитридов активных металлов. Металлоподобные нитриды получают нагреванием металлов в атмосфере азота или аммиака. В качестве исходных веществ могут применяться оксиды, галогениды и гидриды переходных металлов: 2Та + N2 = 2ТаN; Мn2О3 + 2NH3 = 2МnN + 3Н2О СrCl3 + NH3 = СrN + 3НСl; 2ТiН2 + 2NH3 = 2ТiN +5Н2
Применение азота и азотсодержащих соединений Область применения азота очень велика - производство удобрений, взрывчатых веществ, нашатырного спирта, который используют в медицине. Азотсодержащие удобрения являются самыми ценными. К таким удобрениям относится аммиачная селитра, мочевина, аммиак, натриевая селитра. Азот является неотъемлемой часть белковых молекул, поэтому он и необходим растениям для нормального роста и развития. Такое важное соединение азота с водородом, как аммиак, используют в холодильных установках, аммиак, циркулируя по замкнутой системе труб, при своем испарение отнимает большое количество теплоты. Калийная селитра идет на производство дымного пороха, а порох используют в охотничьих ружьях, для разведки рудных ископаемых, залегающих под землей. Без дымный порох получают из пироксилина - сложного эфира целлюлозы и азотной кислоты. Органические взрывчатые вещества на основе азота используют для прокладки тоннелей в горах (тротил, нитроглицерин).
Фосфор История открытия фосфора Фосфор был открыт в 1669 г. алхимиком Брандтом, когда он в поисках "философского камня" сильно нагревал сухой остаток мочи с углем без доступа воздуха. Выделенное вещество светилось на воздухе и затем загоралось. За это свойство Брандт дал ему название "фосфор", т.е. носящий свет ("светоносец"). После открытия еще сто лет фосфор был редким и дорогим веществом, т.к. содержание в моче его ничтожно мало, а добывание сложно. И лишь после 1771 г., когда шведский химик Шееле разработал способ получение фосфора из костей, стало возможным получение его в значительных количествах.
Особенности фосфора Второй типический элемент типический элемент в пятой группе является неметаллом. Наивысшая степень окисления, которую может проявлять фосфор, равна +5. Соединения, содержащие фосфор в степени окисления меньшей, чем +5 проявляют себя как восстановители. В то же время соединения фосфора +5 в растворах окислителями не являются. Кислородные соединения фосфора более устойчивы, чем таковые азота. Водородные же соединения менее стабильны. Природные соединения и получение фосфора По распространенности в земной коре фосфор опережает азот, серу и хлор. В отличие от азота фосфор встречается в природе только в виде соединений. Наиболее важные минералы фосфора - апатит Са5Х(РО4)3 (Х - фтор, реже хлор и гидрооксильная группа) и фосфорит основой которого является Са3(РО4)2. Кроме того, фосфор входит в состав некоторых белковых веществ и содержится в растениях и организмах животных и человека. Из природного фосфорсодержащего сырья свободный фосфор получают высокотемпературным восстановлением (1500 град.С) коксом в присутствии песка. Последний связывает оксид кальция в шлак - силикат кальция. В случае восстановления фосфорита суммарная реакция может быть представлена уравнением: Са3(РО4)2 + 5С + 3SiО2 = СаSiО3 + 5СО + Р2 Образующийся угарный газ и парообразный фосфор поступают в холодильник с водой, где происходит конденсация с образованием твердого белого фосфора. Физические и химические свойства Ниже 1000 град.С пары фосфора содержат четырехатомные молекулы Р4, имеющие форму тетраэдра. При более высоких температурах происходит термическая диссоциация и в смеси возрастает содержание двухатомных молекул Р2. Распад последних на атомы фосфора наступает выше 2500 град.С. Белая модификация фосфора, получающаяся при конденсации паров, имеет молекулярную кристаллическую решетку, в узлах которой дислоцированы молекулы Р4. Из-за слабости межмолекулярных сил белый фосфор летуч, легкоплавок, режется ножом и растворяется в неполярных растворителях, например в сероуглероде. Белый фосфор весьма реакционноспособное вещество. Он энергично взаимодействует с кислородом, галогенами, серой и металлами. Окисление фосфора на воздухе сопровождается разогреванием и свечением. Поэтому белый фосфор хранят под водой, с которой он не реагирует. Белый фосфор очень токсичен. При длительном хранении, а также при нагревании белый фосфор переходит в красную модификацию. Красный фосфор представляет собой полимерное вещество, нерастворимое в сероуглероде, менее токсичное, чем белый фосфор. Окисляется красный фосфор труднее белого, не светится в темноте и воспламеняется лишь при 250 град.С. Наиболее стабильной модификацией фосфора является черный фосфор. Его получают аллотропным превращением белого фосфора при температуре 220 град.С и давлении 1200 МПа. По внешнему виду он напоминает графит. Кристаллическая структура черного фосфора слоистая, состоящая из гофрированных слоев. Как и в красном фосфоре, здесь каждый атом фосфора связан ковалентными связями с тремя соседями. Расстояние между атомами фосфора 0,387 нм. Белый и красный фосфор - диэлектрики, а черный фосфор - полупроводник с шириной запрещенной зоны 0,33 эВ. В химическом отношении черный фосфор наименее реакционноспособен, воспламеняется лишь при нагревании выше 400 град.С. Окислительную функцию проявляет фосфор при взаимодействии с металлами: 3Са + 2Р = Са3Р2 Как восстановитель фосфор выступает в реакциях с активными неметаллами - галогенами, кислородом, серой, а также с сильными окислителями: 2Р + 3S = Р2S3 2Р + 5S = Р2S5 С кислородом и хлором взаимодействует аналогично. Р + 5НNО3 = Н3РО4 + 5NО2 + Н2О В растворах щелочей при нагревании белый фосфор диспропорционирует: 8Р + 3Ва(ОН)2 + 6Н2О = 2РН3 + 3Ва(Н2РО2)2 Фосфорсодержащие кислоты и их соли Химический оксид фосфора (+3) имеет кислотную природу: Р2О3 + 3Н2О = 2Н3РО3 Фосфористая кислота - бесцветные легкоплавкие хорошо растворимые в воде кристаллы. По химическому строению она представляет собой искаженный тетраэдр, в центре которого находится атом фосфора с sр3 - гибридными орбиталями, а вершины заняты двумя гидроксогруппами и атомами водорода и кислорода. Атом водорода, непосредственно соединенный с фосфором, не способен к замещению, а потому фосфористая кислота максимум двухосновна и нередко ее изображают формулой Н2[НРО3]. Фосфористая кислота - кислота средней силы. Соли ее - фосфиты получают взаимодействием Р2О3 со щелочами: Р2О3 + 4NаОН = 2Nа2НРО3 + Н2О Фосфиты щелочных металлов и кальция легко растворимы в воде. При нагревании фосфористая кислота диспропорционирует: 4Н3РО3 = РН3 + 3Н3РО4 Фосфористая кислота окисляется многими окислителями, в том числе галогенами, например: Н3РО3 + Сl2 + Н2О = Н3РО4 + 2НСl Получают обычно фосфористую кислоту гидролизом тригалогенидов фосфора: РГ3 + 3Н2О = Н3РО3 + 3НГ При нагревании однозамещенных фосфитов получаются соли пирофосфористой (дифосфористой) кислоты - пирофосфиты: 2NаН2РО3 = Nа2Н2Р2О5 + Н2О Пирофосфиты при кипячении с водой гидролизуются: Nа2Н2Р2О5 + 3Н2О = 2NаОН + 2Н3РО3 Сама пирофосфористая кислота Н4Р2О5 (пентаоксодифосфорная), как и фосфористая, только двухосновна и сравнительно малоустойчива. Известна еще одна кислота фосфора (+3) - плохо изученная полимерная метафосфористая кислота (НРО2)n. Наиболее характерен для фосфора оксид Р2О5 - пентаоксид дифосфора. Это белое твердое вещество, которое легко может быть получено и в стеклообразном состоянии. В парообразном состоянии молекулы оксида фосфора (+5) имеют состав Р4О10. Твердый Р2О5 имеет несколько модификаций. Одна из форм оксида фосфора (+5) имеет молекулярную структуру с молекулами Р4О10 в узлах решетки. По внешнему виду эта модификация напоминает лед. Она обладает небольшой плотностью, легко переходит в пар, хорошо растворяется в воде и реакционноспособна. Р2О5 - сильнейший дегидратирующий реагент. По интенсивности осушающего действия он намного превосходит такие поглотители влаги, как СаСl2, NаОН, Н2SО4 и др. При гидратации Р2О5 сначала образуется метафосфорная кислота: Р2О5 + Н2О = 2НРО3 дальнейшая гидратация которой последовательно приводит к пирофосфорной и ортофосфорной кислоте: 2НРО3 + Н2О = Н4Р2О7 и Н4Р2О7 + Н2О = 2Н3РО4 Ортофосфорная кислота - одно из наиболее важных производных фосфора (+5). Это бесцветные, легкоплавкие, расплывающиеся на воздухе кристаллы, смешивающиеся с водой в любых соотношениях. В твердой кислоте и концентрированных растворах действуют межмолекулярные водородные связи. Поэтому крепкие растворы Н3РО4 отличаются высокой вязкостью. В водной среде ортофосфорная кислота - кислота средней силы. В водном растворе ортофосфаты - соли фосфорной кислоты - подвергаются гидролизу, причем рН среды при переходе от средней соли к кислой закономерно снижается. Nа3РО4 + Н2О = NаОН + Nа2НРО4 , рН = 12,1 Nа2НРО4 + Н2О = NаОН + NаН2РО4 , рН = 8,9 При окислении влажного фосфора наряду с Р2О5 и Р2О3 образуется фосфорноватая кислота (гексаоксодифосфорная) кислота Н4Р2О6, в которой степень окисления фосфора +4. В ее структуре атомы фосфора связаны друг с другом непосредственно в отличие от полифосфорных кислот: Н4Р2О6 - кислота средней силы, все ее четыре атома водорода могут быть замещены на металл. При нагревании ее водных растворов кислота, присоединяя воду, распадается: Н4Р2О6 + Н2О = Н3РО3 + Н3РО4 Растворы ее солей - гипофосфатов - в воде вполне устойчивы. Из гипофосфатов в воде хорошо растворимы лишь соли щелочных металлов. Наименьшая положительная степень окисления фосфора в фосфорноватистой (диоксофосфорной) кислоте Н3РО2. Ее можно получить в свободном состоянии вытеснением из солей - гипофосфитов, например: Ва(Н2РО2)2 + Н2SО4 = ВаSО4 + 2Н3РО2 Фосфорнофатистая кислота - бесцветные кристаллы, хорошо растворимые в воде. Таким образом, в фосфорноватистой кислоте степень окисления фосфора +1, а его ковалентность равна 5. Н3РО2 - сильная кислота. Эта кислота и ее соли гипофосфиты являются сильнейшими восстановителями. Существуют и другие кислоты, содержащие фосфор - мононадфосфорная Н3РО5, динадфосфорную Н4Р2О8, тетраметафосфорная (НРО3)4, пирофосфорная Н4Р2О7. Соединения фосфора с неметаллами Фосфор и водород в виде простых веществ практически не взаимодействуют. Водородные производные фосфора получают косвенным путем, например: Са3Р2 + 6НСl = 3СаСl2 + 2РН3 Фосфин РН3 представляет собой бесцветный сильнотоксичный газ с запахом гнилой рыбы. Молекулу фосфина можно рассматривать как молекулу аммиака. Однако угол между связями Н-Р-Н значительно меньше, чем у аммиака. Это означает уменьшение доли участия s-облаков в образовании гибридных связей в случае фосфина. Связи фосфора с водородом менее прочны, чем связи азота с водородом. Донорные свойства у фосфина выражены слабее, чем у аммиака. Малая полярность молекулы фосфина, и слабая активность акцептировать протон приводят к отсутствию водородных связей не только в жидком и твердом состояниях, но и с молекулами воды в растворах, а также к малой стойкости иона фосфония РН4+. Самая устойчивая в твердом состоянии соль фосфония - это его иодид РН4I. Водой и особенно щелочными растворами соли фосфония энергично разлагаются: РН4I + КОН = РН3 + КI + Н2О Фосфин и соли фосфония являются сильными восстановителями. На воздухе фосфин сгорает до фосфорной кислоты: РН3 + 2О2 = Н3РО4 При разложении фосфидов активных металлов кислотами одновременно с фосфином образуется в качестве примеси дифосфин Р2Н4. Дифосфин - бесцветная летучая жидкость, по структуре молекул аналогична гидразину, но фосфин не проявляет основных свойств. На воздухе самовоспламеняется, при хранении на свету и при нагревании разлагается. В продуктах его распада присутствуют фосфор, фосфин и аморфное вещество желтого цвета. Этот продукт получил название твердого фосфористого водорода, и ему приписывается формула Р12Н6. С галогенами фосфор образует три- и пентагалогениды. Эти производные фосфора известны для всех аналогов, но практически важны соединения хлора. РГ3 и РГ5 токсичны, получают непосредственно из простых веществ. РГ3 - устойчивые экзотермические соединения; РF3 - бесцветный газ, РСl3 и РВr3 - бесцветные жидкости, а РI3 - красные кристаллы. В твердом состоянии все тригалогениды образуют кристаллы с молекулярной структурой. РГ3 и РГ5 являются кислотообразующими соединениями: РI3 + 3Н2О = 3НI + Н3РО3 Известны оба нитрида фосфора, отвечающие трех- и пятиковалентному состояниям: РN и Р2N5. В обоих соединениях азот трехвалентен. Оба нитрида химически инертны, устойчивы к действию воды, кислот и щелочей. Расплавленный фосфор хорошо растворяет серу, но химическое взаимодействие наступает при высокой температуре. Из сульфидов фосфора лучше изучены Р4S3, Р4S7, Р4S10. Указанные сульфиды могут быть перекристализованы в расплаве нафталина и выделены в виде желтых кристаллов. При нагревании сульфиды воспламеняются и сгорают с образованием Р2О5 и SО2. Водой все они медленно разлагаются с выделением сероводорода и образованием кислородных кислот фосфора. Соединения фосфора с металлами С активными металлами фосфор образует солеобразные фосфиды, подчиняющиеся правилам классической валентности. р-Металлы, а также металлы подгруппы цинка дают и нормальные, и анионоизбыточные фосфиды. Большинство из этих соединений проявляют полупроводниковые свойства, т.е. доминирующая связь в них - ковалентная. Отличие азота от фосфора, обусловленное размерным и энергетическим факторами, наиболее характерно проявляется при взаимодействии этих элементов с переходными металлами. Для азота при взаимодействии с последними главным является образование металлоподобных нитридов. Фосфор также образует металлоподобные фосфиды. Многие фосфиды, особенно с преимущественно ковалентной связью, тугоплавки. Так, АlР плавится при 2197 град.С, а фосфид галлия имеет температуру плавления 1577 град.С. Фосфиды щелочных и щелочно-земельных металлов легко разлагаются водой с выделением фосфина. Многие фосфиды являются не только полупроводниками (АlР, GаР, InР), но и ферромагнетиками, например СоР и Fе3Р. Применение фосфора и фосфорсодержащих веществ Красный фосфор в чистом виде применяют в спичечном производстве; в смеси с толченым стеклом и клеем его наносят на боковые поверхности спичечной коробки. Красный и белый фосфор используют при получении йодистоводородной и бромистоводородной кислот. Фосфид цинка Zn3Р2 применяют для борьбы с грызунами. Белый фосфор используют в военном деле для зажигательных бомб, а также для дымообразующих снарядов, шашек и гранат, дающих дымовые завесы. Применение радиоактивного изотопа фосфора Р32 позволило по-новому осветить поведение фосфора в растениях, почве и удобрениях. Исключительная чувствительность определения радиоактивного фосфора дает возможность следить за ходом поступления в растения фосфатов, за их распределением и превращениями внутри растений. Чистую фосфорную кислоту используют в пищевой и фармацевтической промышленности. Техническая фосфорная кислота идет для окрашивания тканей, производства эмалей, зубных пломб, а также для производства фосфорных удобрений. Литература: 1.Угай Я. А. Общая и неорганическая химия: Учеб. Для студентов вузов, обучающихся по направлению и спец. "Химия". - М.: Высш. шк., 1997 г. 2. Ходаков Ю. В. Неорганическая химия. Изд. 4-е, переработ. М., "Просвещение",1972г. 3. Неорганическая химия под редакцией И. Н. Заозерского. М.: Высш. шк. 1963 г.
|
|
|