Главная Рефераты по рекламе Рефераты по физике Рефераты по философии Рефераты по финансам Рефераты по химии Рефераты по хозяйственному праву Рефераты по цифровым устройствам Рефераты по экологическому праву Рефераты по экономико-математическому моделированию Рефераты по экономической географии Рефераты по экономической теории Рефераты по этике Рефераты по юриспруденции Рефераты по языковедению Рефераты по юридическим наукам Рефераты по истории Рефераты по компьютерным наукам Рефераты по медицинским наукам Рефераты по финансовым наукам Рефераты по управленческим наукам Психология и педагогика Промышленность производство Биология и химия Языкознание филология Издательское дело и полиграфия Рефераты по краеведению и этнографии Рефераты по религии и мифологии Рефераты по медицине Рефераты по сексологии Рефераты по информатике программированию Краткое содержание произведений |
Реферат: Создание в среде Borland C++ Builder dll, совместимой с Visual C++Реферат: Создание в среде Borland C++ Builder dll, совместимой с Visual C++Роман Мананников Проблемы взаимодействия Сложность использования dll, созданной с помощью Borland C++ Builder (далее BCB), в проектах, разрабатываемых в средах Microsoft, обусловлена тремя основными проблемами . Во-первых, Borland и Microsoft придерживаются разных соглашений о наименовании (naming convention) функции в dll. В зависимости от того, как объявлена экспортируемая функция, ее имя может быть дополнено компилятором определенными символами. Так, при использовании такого соглашения о вызове (calling convention), как __cdecl, BCB перед именем функции добавляет символ подчеркивания. Visual C++ (далее VC), в свою очередь, при экспорте функции как __stdcall добавит к ее имени помимо подчеркивания также информацию о списке аргументов (символ @ плюс размер списка аргументов в байтах).
В таблице 1 приведены возможные варианты наименований для экспортируемой функции MyFunction, объявленной следующим образом:
в зависимости от соглашения о вызове (<calling convention>) и компилятора.
Таблица 1. Наименования функций в зависимости от соглашения о вызове и компилятора. Во-вторых, объектные двоичные файлы (.obj и .lib), создаваемые BCB, несовместимы с объектными файлами VC, и, следовательно, не могут быть прилинкованы к VC-проекту. Это означает, что при желании использовать неявное связывание (linking) c dll необходимо каким-то образом создать .lib-файл (библиотеку импорта) формата, которого придерживается Microsoft.
В-третьих, классы и функции-методы классов, экспортируемые из BCB dll, не могут быть использованы в проекте на VC. Причина этого кроется в том, что компиляторы искажают (mangle) имена как обычных функций, так и функций-методов класса (не путайте с разными соглашениями о наименованиях). Искажение вносится для поддержки полиморфизма, то есть для того, чтобы различать функции с одинаковым именем, но разными наборами передаваемых им параметров. Если для обычных функций искажения можно избежать, используя перед определением функции директиву extern ”С” (но при этом, во-первых, на передний план выходит первая проблема – разные соглашения о наименовании функций в dll, а во-вторых, из двух и более функций с одинаковым именем директиву extern ”С” можно использовать только для одной из них, в противном случае возникнут ошибки при компиляции), то для функций-методов класса искажения имени неизбежны. Компиляторы Borland и Microsoft, как вы уже, вероятно, догадались, используют различные схемы внесения искажений. В результате VC-приложения попросту не видят классы и методы классов, экспортируемые библиотеками, скомпилированными в BCB.
Эти три проблемы осложняют использование BCB dll из приложений, созданных на VC, но все-таки это возможно. Ниже описаны три способа создания dll совместимой с VC и дальнейшего успешного использования этой dll. Алгоритмы создания VC-совместимой dll и ее использование Два из описанных в этом разделе алгоритмов применяют неявное связывание с dll, один – явную загрузку dll. Опишем сначала самый простой способ – использование BCB dll из проекта VC посредством ее явной загрузки в процессе выполнения программы. Алгоритм с явной загрузкой dll Применяя данную технику, нам не придется создавать совместимые с VC библиотеки импорта (.lib). Вместо этого добавится ряд действий по загрузке и выгрузке dll в приложении, ее использующем. Создадим BCB dll (New -> DLL Wizard -> C++ -> Use VCL -> OK), экспортирующую для простоты всего две функции. Одна из функций будет вычислять сумму двух чисел и не будет использовать VCL-классы, а другая будет создавать окно и выводить в VCL-компонент TStringGrid элементы массива, переданного в качестве одного из аргументов.
Листинг 1 - Компилятор Borland C++ Builder 5 ExplicitDll.h
Ключевое слово __declspec с атрибутом dllexport помечает функцию как экспортируемую, имя функции добавляется в таблицу экспорта dll. Таблица экспорта любого PE-файла (.exe или .dll) состоит из трех массивов: массива имен функций (а точнее, массива указателей на строки, содержащие имена функций), массива порядковых номеров функций и массива относительных виртуальных адресов (RVA) функций. Массив имен функций упорядочен в алфавитном порядке, ему соответствует массив порядковых номеров функций. Порядковый номер после некоторых преобразований превращается в индекс элемента из массива относительных виртуальных адресов функций. При экспорте функции по имени имеет место следующая последовательность действий: по известному имени функции определяется ее индекс в массиве имен функций, далее по полученному индексу из массива порядковых номеров определяется порядковый номер функции, затем из порядкового номера, с учетом базового порядкового номера экспорта функций для данного PE-файла, вычисляется индекс, по которому из массива адресов извлекается искомый RVA функции. Помимо экспорта по имени возможен экспорт функций по их порядковым номерам (ordinal). В этом случае последовательность действий для получения индекса элемента из массива относительных виртуальных адресов сводится только к преобразованию порядкового номера функции. Для экспорта функций по номеру используется .def-файл с секцией EXPORTS, где за каждой функцией будет закреплен порядковый номер. При этом в тексте самой dll функции как экспортируемые не помечаются. Подробнее о таблице экспорта можно прочитать в статье по адресу http://www.rsdn.ru/article/baseserv/pe_coff.xml. ExplicitDll.cpp
Проанализируем сформированные компилятором наименования экспортируемых функций. Воспользовавшись утилитой impdef.exe, поставляемой совместно с C++Builder (находится в каталоге $(BCB)Bin, синтаксис командной строки – impdef.exe ExplicitDll.def ExplicitDll.dll), получим следующий .def-файл ExplicitDll.def
Поскольку в данном примере экспортируемая функция ViewStringGridWnd использует соглашение __stdcall, ее имя осталось неизменным (см. таблицу 1), следовательно, для вызова этой функции VC-приложение воспользуется именем ViewStringGridWnd (например, при вызове GetProcAddress), а вот для вызова функции SumFunc использовать придется имя _SumFunc. Очевидно, что осуществлять вызов функции, пользуясь ее измененным именем, неудобно само по себе, а тем более, если dll пишет один программист, а работает с ней другой. Для того чтобы при использовании __cdecl-соглашения экспортируемые функции можно было использовать с их истинными именами (без символов подчеркивания), необходимо об этом позаботиться заранее, то есть на этапе создания самой dll. Для этого создается .def-файл (это можно сделать в любом текстовом редакторе), в котором определяется секция EXPORTS, содержащая псевдоним (alias) для каждой экспортируемой __cdecl-функции. В нашем случае он будет выглядеть следующим образом ExplicitDllAlias.def
То есть, у функции, экспортируемой как _SumFunc, будет псевдоним SumFunc, который мы исключительно для удобства делаем идентичным оригинальному имени этой функции в коде (хотя псевдоним может быть каким угодно). Созданный .def-файл добавляется (Project -> Add to Project) к проекту dll. После компиляции, проанализировав dll c помощью impdef.exe, получим следующее ExplicitDll.def
Имеем на одну экспортируемую функцию больше, но при этом реальное количество функций в dll осталось неизменным, а функция с именем SumFunc (функция-псевдоним) является ссылкой на свой оригинал, то есть на функцию, экспортируемую под именем _SumFunc.
Таким образом, с помощью .def-файла псевдонимов при экспорте функций, определенных как __cdecl, мы избавляем пользователей от необходимости вызова функций по их измененным именам, хотя и такая возможность остается.
В результате изложенного выше мы получили dll, экспортирующую функции с именами SumFunc и ViewStringGridWnd. При этом их названия не зависят от того, какое соглашение о вызове использовалось при объявлении этих функций. Теперь рассмотрим пример использования нашей dll в приложении VC. Создадим в среде Visual C++ 6.0 (или Visual C++ 7.0) простое MFC-приложение, которое будет представлять собой обычное диалоговое окно (File -> New -> MFC AppWizard(exe) -> Dialog based -> Finish). Добавим к исходному диалогу две кнопки: кнопку “SumFunc” и кнопку “ViewStringGridWnd”. Затем для каждой кнопки создадим обработчик события BN_CLICKED: OnSumFunc() и OnViewStringGridWnd() соответственно. Нам также понадобятся обработчики сообщений для событий формы WM_CREATE и WM_DESTROY. Полный рабочий код этого приложения находится в примерах к статье, здесь же будет приведена только часть, демонстрирующая работу с нашей dll, поскольку оставшаяся часть кода генерируется средой разработки. Листинг 2 - Компилятор Visual C++ 6.0 UsingExplicitDLLDlg.cpp
Явная загрузка dll имеет как преимущества, так и недостатки. В нашем случае большим плюсом является то, что явная загрузка избавляет от какого бы то ни было взаимодействия с исходным кодом dll, в частности нет необходимости подключать заголовочный .h-файл с объявлениями функций. Клиентское приложение компилируется и работает независимо от используемой dll, а случаи неудачной загрузки библиотеки или неудачного получения адреса функции всегда можно обыграть так, чтобы они не повлияли на дальнейшее выполнение основного приложения.
Таким образом, для вызова экспортируемой функции из dll, скомпилированной в BCB, необходимо выполнить следующую последовательность действийя: Объявить экспортируемые функции либо как __cdecl, либо как __stdcall. Если используется только соглашение __stdcall, пропускаем пункт 3. Поместить объявления функций в блок extern ”С”. Не экспортировать классы и функции-члены классов, поскольку это все равно не удастся. Если экспортируются функции с соглашением о вызове __cdecl, то добавить к проекту .def-файл с псевдонимами для каждой такой функции. Откомпилировать dll. Создать клиентский (то есть использующий BCB библиотеку) VC-проект. Скопировать созданную BCB dll в папку с клиентским VC-приложением. Загрузить dll из клиентского приложения в память при помощи LoadLibrary. Получить адрес требуемой функции с помощью GetProcAddress и присвоить его указателю на функцию. Вызвать функцию с помощью указателя на нее. По окончании использования выгрузить dll из памяти с помощью FreeLibrary. Алгоритм с неявным связыванием для экспорта (импорта) __cdecl-функций Как следует из названия раздела, данный способ предназначен для экспорта (а на клиентской стороне – для импорта) функций с __cdecl-соглашением о вызове. Чтобы воспользоваться неявным связыванием, прежде всего, необходимо создать объектный .lib-файл (библиотеку импорта), содержащий ссылку на dll и перечень находящихся в dll функций. Данный объектный файл можно создать по .def-файлу экспорта библиотеки с помощью утилиты lib.exe. При этом полученный .lib-файл будет в нужном нам формате COFF, поскольку компилятор VC придерживается именно этой спецификации (утилита lib.exe поставляется совместно с VC и умеет создавать библиотеки импорта только по .def-файлу). Готовый .lib-файл прилинковывается к клиентскому проекту. При неявном связывании приложение не подозревает, что использует dll, поэтому функции, вызываемые из динамической библиотеки, как и любые другие, должны быть объявлены в тексте клиентской программы. Для объявления функций воспользуемся исходным заголовочным файлом BCB dll, но функции в нем должны быть помечены уже не как __declspec(dllexport), а как __declspec(dllimport), то есть как импортируемые извне, поскольку по отношению к клиентскому приложению эти функции являются именно импортируемыми. Исходный текст dll на этот раз будет выглядеть следующим образом: Листинг 3 - Компилятор Borland C++ Builder 5 ImplicitLinking_cdecl.h
ImplicitLinking_cdecl.cpp
Основная возникающая при этом проблема заключается в том, что, согласно таблице 1, функции с __cdecl-соглашением о вызове будут экспортироваться с символом подчеркивания, следовательно, .lib-файл, созданный по .def-файлу экспорта библиотеки, будет содержать измененные имена функций. С другой стороны, во-первых, компилятор VC будет ожидать неизмененных наименований __cdecl-функций, потому что сам VC, экспортируя функции с __cdecl-соглашением о вызове, ничего к их наименованию не добавляет, а во-вторых, заголовочный файл BCB dll, подключаемый к клиентскому приложению, содержит объявления функций с их реальными (без символа подчеркивания) именами. В результате этого, если в тексте клиентского приложения встретится хотя бы один вызов нашей функции, то VC при связывании попытается найти описание этой импортируемой функции в добавленной к проекту библиотеке импорта (.lib-файле), с тем, чтобы добавить соответствующую запись в таблицу импорта приложения. Но из-за несоответствия имен функций в заголовочном и объектном файлах линковщик, естественно, в .lib-файле ничего не найдет, о чем не замедлит выдать сообщение (например, такое - error LNK2001: unresolved external symbol __imp__SumFunc).
Описанную выше проблему несоответствия заголовочного и объектного файлов можно решить двумя способами – снова воспользоваться рассмотренным в предыдущем разделе .def-файлом с псевдонимами или использовать в заголовочном файле нашей библиотеки директиву препроцессора #define. Использование псевдонимов Следуя этому способу, создаем и добавляем к проекту BCB dll следующий .def-файл: ImplicitLinkingAliases.def
После компиляции наша dll будет экспортировать функции ImplicitLinking_cdecl.def
Таким образом, в таблицу экспорта dll добавляются функции-псевдонимы, имена которых соответствуют функциям, объявленным в заголовочном файле нашей библиотеки. Для полного соответствия (хотя этого можно и не делать) удалим из ImplicitLinking_cdecl.def упоминания обо всех посторонних для приложения-клиента функциях, так как заголовочный файл содержит объявления только двух функций. В результате получим .def-файл готовый для генерации из него объектного .lib-файла: ImplicitLinking_cdecl.def
С помощью утилиты lib.exe создадим необходимый для неявного связывания .lib-файл в формате COFF, для этого в командной строке наберем
либо
Полученный .lib-файл добавим к проекту VC-клиента (Project -> Add To Project -> Files…). Использование директивы препроцессора #define Теперь рассмотрим способ, позволяющий добиться одинаковых названий функций в заголовочном и объектном (.lib) файлах с помощью директивы #define. Перепишем заголовочный файл нашей BCB-библиотеки следующим образом Листинг 4 - Компилятор Borland C++ Builder 5 ImplicitLinking_cdecl.h
При компиляции клиентского VC-приложения в подключенном к проекту заголовочном файле dll (ImplicitLinking_cdecl.h) к наименованию каждой функции с помощью директив #define добавляется символ подчеркивания (макрос _MSC_VER определяется компилятором VC по умолчанию). Поскольку из BCB dll __cdecl-функции экспортируются таким же образом, то есть с добавлением символа подчеркивания, то устанавливается соответствие имен экспортируемых и объявленных функций. Макросы #define распространяют свое влияние и на весь последующий код приложения, что позволяет в тексте программы при вызове импортируемой функции пользоваться ее оригинальным именем, которое при компиляции будет дополнено необходимым магическим символом подчеркивания. Таким образом, мы идем на поводу у фирмы Borland и в клиентском приложении завуалированно используем для вызова функций из нашей dll имена, измененные компилятором BCB. Именно необходимость использования измененных имен (пусть и не в открытую благодаря define-трюку), на мой взгляд, является существенным недостатком этого способа, так как, например, при желании явно (см. раздел “Алгоритм с явной загрузкой dll”) использовать dll придется оперировать измененными именами функций. Не развивая дальше эту тему, скажу, что если BCB dll создается с четким намерением использовать ее в VC-приложениях, то лучше добавлять к проекту библиотеки .def-файл с удобными для пользователей именами-псевдонимами функций. К достоинствам данного способа (define-трюка) можно отнести его простоту и, как бы это ни противоречило сказанному в предыдущем абзаце, отсутствие необходимости добавлять к таблице экспорта dll псевдонимы функций. Несмотря на все удобства использования псевдонимов, таблица экспорта (а следовательно, и сама dll) при этом увеличивается в размерах. Да и создание .def-файла псевдонимов при большом количестве функций не добавляет приятных эмоций. После компиляции dll с помощью impdef.exe получаем .def-файл экспорта, из которого утилитой lib.exe создаем объектный .lib-файл и добавляем его к клиентскому VC-проекту. Листинг клиентского приложения, код которого в данном случае не зависит от способа решения проблемы несоответствия наименований функций в заголовочном и объектном файлах библиотеки, представлен ниже. Как и в предыдущем разделе, это диалоговое окно с двумя кнопками. Интересующий нас код сосредоточен в обработчиках событий нажатия кнопок диалога. Листинг 5 - Компилятор Visual C++ 6.0 UsingImplicitLinking_cdeclDlg.cpp
Основным преимуществом неявной загрузки dll является именно неявность использования dll со стороны клиентского приложения. Другими словами, приложение, вызывая функции, не подозревает, что они могут находиться где-то во внешнем модуле. Результатом является упрощение кода программы. К недостаткам следует отнести тот факт, что dll находится в памяти в течение всей работы программы, неявно ее использующей. Загрузка dll осуществляется при загрузке приложения – загрузчик PE-файлов, просматривая каждую запись в таблице импорта приложения, загружает соответствующую этой записи dll. Следовательно, если используемых библиотек много, загрузка основной программы может затянуться. В случае отсутствия неявно используемой dll приложение вообще не запустится. Итоговый алгоритм с неявным связыванием для экспорта (импорта) __cdecl-функций состоит из следующей последовательности действий (см. также Демонстрационный проект): 1. Объявить экспортируемые функции как __cdecl. 2. Поместить объявления функций в блок extern ”С”, при этом не экспортировать классы и функции-члены классов. 3. В заголовочный файл для возможности его дальнейшего использования на клиентской стороне вставить:
и добавить макрос _DECLARATOR_ к объявлению каждой функции, например,
4. Далее либо создать и добавить к проекту .def-файл с псевдонимами для каждой функции, либо добавить в заголовочный файл библиотеки следующее:
Если использовался #define-трюк, то пункт 7 нужно будет пропустить. 5. Скомпилировать BCB dll. 6. С помощью impdef.exe создать .def-файл с наименованиями экспортируемых функций. 7. Если в пункте 4 воспользовались псевдонимами, удалить из .def-файла экспорта неиспользуемые наименования функций, оставив только псевдонимы. 8. Создать клиентский VC-проект. 9. Из .def-файла экспорта библиотеки при помощи утилиты lib.exe создать объектный .lib-файл формата COFF и добавить его к клиентскому VC-приложению. 10. Скопировать BCB dll и ее заголовочный файл в папку с клиентским VC-проектом. 11. В клиентском приложении подключить заголовочный файл dll. 12. Вызвать в теле программы необходимые функции, не задумываясь над тем, что они расположены во внешней dll. Алгоритм с неявным связыванием для экспорта (импорта) __stdcall-функций Как уже упоминалось выше, утилита lib.exe может создавать библиотеку импорта только из .def-файла экспорта, при чем lib.exe при этом никак не взаимодействует с самой dll. Однако .def-файл не содержит никакой информации, касаемой соглашений о вызове, которых придерживаются экспортируемые функции. Следовательно, и lib.exe, работая исключительно с .def-файлом, не сможет уловить, что имеет дело с __stdcall-функциями, и, как результат, не сможет в .lib-файле отобразить функции согласно Microsoft-соглашению о наименовании для __stdcall-функций. Таким образом, учитывая из предыдущего раздела, что для __cdecl-функций lib.exe генерирует вполне работоспособный .lib-файл, приходим к следующему выводу: утилита lib.exe не способна генерировать библиотеки импорта для dll, экспортирующих __stdcall-функции. Людям, пожелавшим или вынужденным (а после прочтения этого раздела думаю только вынужденным) использовать BCB dll с __stdcall-функциями в VC, этот раздел посвящается. Исходный код BCB dll остался таким же, как в предыдущем разделе (см. Листинг 3), только ключевое слово __cdecl везде необходимо заменить ключевым словом __stdcall. Известно, что при создании VC dll вместе с ней среда генерирует .lib-файл (библиотеку импорта), который представлен, естественно, в нужном нам формате COFF, и в котором корректно будут отображаться __stdcall-функции. Поэтому создадим (File -> New… -> Win32 Dynamic-Link Library -> OK -> An empty DLL project -> Finish) ложную (dummy) VC dll, которая будет экспортировать тот же набор функций, что и BCB dll. Реализация функций в ложной dll абсолютно не важна, важны исключительно их наименования. Помимо одинаковых наименований экспортируемых функций у ложной и исходной библиотек должны совпадать имена, поскольку .lib-файлы содержат наименования dll. Можно воспользоваться исходными текстами BCBdll, скопировав .h- и .cpp-файлы в директорию к ложной dll, затем добавив их к проекту (Project -> Add To Project -> Files…) и удалив тела всех функций. Если функция возвращает значение, то оставляем оператор return и возвращаем в соответствии с типом все, что угодно (можно 0, NULL и т.д.). Поскольку тела функций будут пустыми, большую часть директив #include с подключаемыми заголовочными файлами также можно удалить. В итоге получим согласно нашему примеру следующий код ложной dll: Листинг 6 - Компилятор Visual C++ 6.0 ImplicitLinking_stdcallDummy.h
ImplicitLinking_stdcallDummy.cpp
Согласно таблице 1, VC экспортирует __stdcall-функции, добавляя к их наименованию информацию о списке аргументов и символ подчеркивания. Следовательно, в объектном .lib-файле будут имена, отличные от оригинальных имен функций, объявленных в заголовочном файле, и тем более отличные от наименований функций, экспортируемых из BCB dll, так как __stdcall-функции компилятор BCB экспортирует без изменений. Избавляться от этого несоответствия будем снова посредством .def-файла. Для нашего примера он будет следующим: DummyDef.def
Строка с именем библиотеки (LIBRARY) в .def-файле не обязательна, но если она есть, то имя, указанное в ней, в точности должно совпадать с именами ложной и исходной dll. Добавляем .def-файл к VC-проекту, перекомпилируем и получаем ложную dll и необходимую нам библиотеку импорта, содержащую корректное описание экспортируемых __stdcall-функций. .lib-файл, доставшийся в наследство от ложной dll, должен добавляться (прилинковываться) к любому VC-проекту, который собирается использовать нашу исходную BCB dll. Пример VC-приложения, импортирующего __stdcall-функции, такой же, как и в предыдущем разделе (см. Листинг 5). Не забудьте в примере подключить (#include) нужный заголовочный файл BCB dll и добавить к проекту нужную библиотеку импорта. Алгоритм с неявным связыванием для экспорта (импорта) __stdcall-функций (см. также Демонстрационный проект, ImplicitLinkingDll_stdcall.zip): Объявить экспортируемые функции как __stdcall. Поместить объявления функций в блок extern ”С”. Не экспортировать классы и функции-члены классов. Скомпилировать BCB dll. Поскольку создать корректную библиотеку импорта с помощью утилиты lib.exe не удается, создать ложную VC dll, которая содержит такой же набор функций, как и исходная BCB dll. Проверить идентичность названий ложной dll и dll исходной, названия должны совпасть. Если для ложной библиотеки используются исходные тексты BCB dll, то удалить тела функций, если не используются, то создать пустые функции с такими же именами и сигнатурами, как в исходной dll. Дабы предотвратить изменение имен функций при экспорте, добавить к VC-проекту ложной библиотеки .def-файл с секцией EXPORTS, в которой просто перечислены оригинальные наименования всех экспортируемых функций. Скомпилировать ложную dll и получить необходимый .lib-файл с корректным отображением __stdcall-функций. Создать клиентский VC-проект и добавить к нему полученный .lib-файл. Скопировать BCB dll и ее заголовочный файл в папку с клиентским VC-проектом. В клиентском приложении подключить заголовочный файл. Вызвать в тексте программы необходимые функции, не задумываясь над тем, что они расположены во внешней dll. ЗаключениеКак вы могли убедиться, обеспечение успешного взаимодействия BCB dll и клиентского VC-приложения является нетривиальной задачей. Однако такое взаимодействие становится необходимым в случаях, когда использование VCL и C++ Builder-а при разработке отдельных частей приложения является более предпочтительным (например, в силу временных затрат). Используя описанные в статье алгоритмы, вы сможете создавать и успешно использовать BCB dll из VC-проекта. |
|||||||||||||||||||||||||||||||||||||||||
|