рефераты
Главная

Рефераты по рекламе

Рефераты по физике

Рефераты по философии

Рефераты по финансам

Рефераты по химии

Рефераты по хозяйственному праву

Рефераты по цифровым устройствам

Рефераты по экологическому праву

Рефераты по экономико-математическому моделированию

Рефераты по экономической географии

Рефераты по экономической теории

Рефераты по этике

Рефераты по юриспруденции

Рефераты по языковедению

Рефераты по юридическим наукам

Рефераты по истории

Рефераты по компьютерным наукам

Рефераты по медицинским наукам

Рефераты по финансовым наукам

Рефераты по управленческим наукам

Психология и педагогика

Промышленность производство

Биология и химия

Языкознание филология

Издательское дело и полиграфия

Рефераты по краеведению и этнографии

Рефераты по религии и мифологии

Рефераты по медицине

Рефераты по сексологии

Рефераты по информатике программированию

Краткое содержание произведений

Реферат: Проекции точки

Реферат: Проекции точки

It`s help you!   By Taras, Stavropol.

На местах попуска должны быть рисунки (плоскостей, эпюров и т.п.)

ПРОЕКЦИИ ТОЧКИ.

ОРТОГОНАЛЬНАЯ СИСТЕМА ДВУХ ПЛОСКОСТЕЙ ПРОЕКЦИЙ.

Сущность метода ортогонального прое­цирования заключается в том, что предмет проецируется на две взаимно перпендику­лярные плоскости лучами, ортогональны­ми (перпендикулярными) к этим плоско­стям..

Одну из плоскостей проекций H распо­лагают горизонтально, а вторую V — вертикально. Плоскость H назы­вают горизонтальной плоскостью проек­ций, V — фронтальной. Плоскости H и V бесконечны и непрозрачны. Линия пересечения плоскостей проекций называ­ется осью координат и обозначается OX. Плоскости проекций делят пространст­во на четыре двугранных угла — четверти.

Рассматривая ортогональные проекции, предполагают, что наблюдатель находится в первой четверти на бесконечно большом расстоянии от плоскостей проекций. Так как эти плоскости непрозрачны, то види­мыми для наблюдателя будут только те точки, линии и фигуры, которые располо­жены в пределах той же первой четверти.

При построении проекций необходимо по­мнить, что ортогональной проекцией точки на плоскость называется основание пер­пендикуляра, опущенного из данной точки на эту плоскость.

На рисунке показаны точка А и ее орто­гональные проекции а1 и а2.

Точку а1 называют горизонталь­ной проекцией точки А, точку а2 — ее фронтальной проекцией. Каждая из них является основанием перпендику­ляра, опущенного из точки А соответ­ственно на плоскости H и V.

Можно доказать, что проекции точки всегда расположены на прямых, перпенди­кулярных оси ОХ и пересекающих эту ось в одной и той же точке. Действительно, проецирующие лучи Аа1 и Аа2 определя­ют плоскость, перпендикулярную плоско­стям проекций и линии их пересечения — оси ОХ.  Эта плоскость пересекает H и V по прямым а1 аx и а1 аx,, которые образуют с осью OX и друг с другом прямые углы с вершиной в точке аx.

Справедливо и обратное, т. е. если на плоскостях проекций даны точки a1 и a2, расположенные на прямых, пересекающих ось OX в данной точке под прямым углом, то они являются проекциями некоторой точки А. Эта точка определяется пересече­нием перпендикуляров, восставленных из точек aи  a2  к плоскостям H и V.

Заметим, что положение плоскостей проекций в пространстве может оказаться иным. Например, обе плоскости, будучи взаимно перпендикулярными, могут быть вертикальными Но и в этом случае дока­занное выше предположение об ориентации разноименных проекций точек относи­тельно оси остается справедливым.

Чтобы получить плоский чертеж, состоя­щий из указанных выше проекций, плос­кость H совмещают вращением вокруг оси OX с плоскостью V, как показано стрелками на рисунке. В результате пе­редняя полуплоскость H будет совмещена с нижней полуплоскостью V, а задняя полуплоскость H — с верхней полупло­скостью V.

Проекционный чертеж, на котором плос­кости проекций со всем тем, что на них изображено, совмещены определенным об­разом одна с другой, называется эпю­ром (от франц. еpure – чертеж). На рисунке показан эпюр точки А .

При таком способе совмещения плоско­стей H и V проекции a1 и a2 окажутся расположенными на одном перпендикуля­ре к оси OX. При этом расстояние a1ax от горизонтальной проекции точки до оси OX равно расстоянию от самой точки А до плоскости V, а расстояние a2axот фронтальной проекции точки до оси OX равно расстоянию от самой точки А до плоскости H.

Прямые линии, соединяющие разнои­менные проекции точки на эпюре, усло­вимся называть линиями проекци­онной связи.

Положение проекций точек на эпюре зависит от того, в какой четверти находит­ся данная точка. Так, если точка В распо­ложена во второй четверти, то после совмещения плоскостей обе проек­ции окажутся лежащими над осью OX.

Если точка С находится в третьей чет­верти, то ее горизонтальная проекция по­сле совмещения плоскостей окажется над осью, а фронтальная — под осью OX. На­конец, если точка D расположена в чет­вертой четверти, то обе проекции ее окажутся под осью OX. На рисунке пока­заны точки М и N, лежащие на плоскостях проекций. При таком положении точка совпадает с одной из своих проекций, дру­гая же проекция ее оказывается лежа­щей на оси OX. Эта особенность отражена и в обозначении: около той проекции, с ко­торой совпадает сама точка, пишется за­главная буква без индекса.

Следует отметить и тот случай, когда обе проекции точки совпадают. Так будет, если точка находится во второй или чет­вертой четверти на одинаковом расстоя­нии от плоскостей проекций. Обе проекции совмещаются с самой точкой, если послед­няя расположена на оси OX.

ОРТОГОНАЛЬНАЯ СИСТЕМА ТРЕХ ПЛОСКОСТЕЙ ПРОЕКЦИЙ.

Выше было показано, что две проекции точки определяют ее положение в про­странстве. Так как каждая фигура или тело представляет собой совокупность то­чек, то можно утверждать, что и две орто­гональные проекции предмета (при нали­чии буквенных обозначений) вполне опре­деляют его форму.

Однако в практике изображения строи­тельных конструкций, машин и различных инженерных сооружений возникает необ­ходимость в создании дополнительных проекций. Поступают так с единственной целью — сделать проекционный чертеж более ясным, удобочитаемым.

Модель трех плоскостей проекций пока­зана на рисунке. Третья плоскость, перпендикулярная и H и V, обозначается бук­вой W и называется профильной.

Проекции точек на эту плоскость будут также именоваться профильными, а обоз­начают их заглавными буквами или циф­рами с индексом 3 (aз, bз, cз, ... 1з, 2з, 33...).

Плоскости проекций, попарно пересека­ясь, определяют три оси: ОX, ОY и ОZ, которые можно рассматривать как систе­му прямоугольных декартовых координат в пространстве с началом в точке О. Сис­тема знаков, указанная на рисунке, со­ответствует «правой системе» координат.

Три плоскости проекций делят про­странство на восемь трехгранных углов — это так называемые октанты. Нумера­ция октантов дана на рисунке.

Как и прежде, будем считать, что зри­тель, рассматривающий предмет, находит­ся в первом октанте.

Для получения эпюра плоскости H и W вращают, как показано на рисунке, до совмещения с плоскостью V. В результа­те вращения передняя полуплоскость H оказывается совмещенной с нижней по­луплоскостью V, а задняя полуплоскость H — с верхней полуплоскостью V. При повороте на 90° вокруг оси ОZ передняя полуплоскость W совместится с правой полуплоскостью V, а задняя полупло­скость W — с левой полуплоскостью V.

Окончательный вид всех совмещенных плоскостей проекций дан на рисунке. На этом чертеже оси ОX и ОZ, лежащие в не подвижной плоскости V, изображены только один раз, а ось ОY показана дваж­ды. Объясняется это тем, что, вращаясь с плоскостью H, ось ОY на эпюре совме­щается с осью ОZ, а вращаясь вместе с плоскостью W, эта же ось совмещается с осью ОX.

В дальнейшем при обозначении осей на эпюре отрицательные полуоси (— ОX, ОY, ОZ) указываться не будут.

ТРИ КООРДИНАТЫ И ТРИ ПРОЕКЦИИ ТОЧКИ И ЕЕ РАДИУСА-ВЕКТОРА.

Координатами называют числа, которые ставят в соответствие точке для определе­ния ее положения в пространстве или на поверхности.

В трехмерном пространстве положение точки устанавливают с помощью прямоу­гольных декартовых координат х, у и z.

Координату х называют абсциссой, у ординатой и zаппликатой. Абсцисса х определяет расстояние от дан­ной точки до плоскости W, ордината у — до плоскости V и аппликата z - до плос­кости H. Приняв для отсчета координат точки систему, показанную на рисунке, составим таблицу знаков координат во всех восьми октантах. Ка­кая-либо точка пространства А, заданная координатами, будет обозначаться так: A (х, у, z).

Если х = 5, y = 4 и z = 6, то запись примет следующий вид А (5, 4, 6). Эта точ­ка А, все    координаты которой положитель­ны, находится в первом октанте

Координаты точки А являются вместе с тем и координатами ее радиуса-вектора

ОА по отношению к началу координат. Если i, j, k — единичные векторы, направ­ленные соответственно вдоль координат­ных осей х, у, z (рисунок), то

ОА = ОAxi+ОАyj + ОАzk                                      ,где ОАХ, ОАУ, ОАг — координаты векто­ра ОА

Построение изображения самой точки и ее проекций на пространственной модели (рисунок) рекомендуется осуществлять с помощью координатного прямоугольного параллелепипеда. Прежде всего на осях координат от точки О откладывают отрез­ки, соответственно равные 5, 4 и 6 едини­цам длины. На этих отрезках ( Оax , Оay , Оaz ), как на ребрах, строят прямоугольный параллелепипед. Вершина его, проти­воположная началу координат, и будет определять заданную точку А. Легко заме­тить, что для определения точки А доста­точно построить только три ребра парал­лелепипеда, например Оax , axa1  и a1А или Оay , aya1  и a1A    и т. д. Эти ребра образу­ют координатную ломаную линию, длина каждого звена которой определяется со­ответствующей координатой точки.

Однако построение параллелепипеда по­зволяет определить не только точку А, но и все три ее ортогональные проекции.

Лучами, проецирующими точку на плос­кости H, V, W являются те три ребра параллелепипеда, которые пересекаются в точке А.

Каждая из ортогональных проекций точки А, будучи расположенной на плоско­сти, определяется только двумя координа­тами.

Так, горизонтальная проекция a1 опре­деляется координатами х и у, фронтальная проекция a2 — координатами х и z, про­фильная проекция a3координатами у и z. Но две любые проекции определяются тремя координатами. Вот почему задание точки двумя проекциями равносильно за­данию точки тремя координатами.

На эпюре (рисунок), где все плоскости проекций совмещены, проекции a1 и a2 окажутся на одном перпендикуляре к оси ОX, а проекции a2 и a3  — на одном пер­пендикуляре к оси OZ.

Что касается проекций a1 и a3 , то и они связаны прямыми a1ay и a3ay , перпендикулярными оси ОY. Но так как эта ось на эпюре занимает два положения, то отре­зок a1ay не может быть продолжением отрезка  a3ay .

Построение проекций точки А (5, 4, 6) на эпюре по заданным координатам выполня­ют в такой последовательности: прежде всего на оси абсцисс от начала координат откладывают отрезок Оax = х (в нашем случае х = 5), затем через точку ax прово­дят перпендикуляр к оси ОX, на котором с учетом знаков откладываем отрезки axa1 = у (получаем a1 ) и axa2 = z (получаем a2 ). Остается построить профильную проекцию точки a3 . Так как профильная и фронтальная проекции точки должны быть расположены на одном перпендикуляре к оси OZ , то через a3 проводят прямую  a2az ^ OZ.

Наконец, возникает последний вопрос: на каком расстоянии от оси ОZ должна находиться  a3 ?

Рассматривая координатный параллелепипед (см. рисунок), ребра которого aza= Oayaxa1 = y заключаем, что ис­комое расстояние aza3  равно у. Отрезок aza3 откладывают вправо от оси ОZ, если у>0, и влево, если у<0.

Проследим за тем, какие изменения про­изойдут на эпюре, когда точка начнет менять свое положение в пространстве.

Пусть, например, точка А (5, 4, 6) станет перемещаться по прямой, перпендикуляр­ной плоскости V. При таком движении будет меняться только одна координата у, показывающая расстояние от точки до плоскости V. Постоянными будут оста­ваться координаты х и z , а проекция точ­ки, определяемая этими координатами, т. е. a2 не изменит своего положения.

Что касается проекций a1 и a3 , то пер­вая начнет приближаться к оси ОX, вто­рая — к оси ОZ. На рисунках новому положению точки соответствуют обозначе­ния a1 (a1a2a31 ). В тот момент, когда точка окажется на плоскости V (y = 0), две из трех проекций      (a12и a32) будут лежать на осях.

Переместившись из I октанта во II, точ­ка начнет удаляться от плоскости V, ко­ордината у станет отрицательной, ее абсо­лютная величина будет возрастать. Горизонтальная проекция этой точки, будучи расположенной на задней полуплоскости H, на эпюре окажется выше оси ОX, а профильная проекция, находясь на задней полуплоскости W,  на эпюре будет слева от оси ОZ. Как всегда, отрезок az a33 = у.

На последующих эпюрах мы не станем обозначать буквами точки пересечения ко­ординатных осей с линиями проекционной связи. Это в какой-то мере упростит чер­теж.

В дальнейшем встретятся эпюры и без координатных осей. Так поступают на практике при изображении предметов, когда существенно только само изображе­ние предмета, а не его положение относи­тельно плоскостей проекций.

Плоскости проекций в этом случае определены с точностью лишь до параллельно­го переноса (рисунок). Их обычно переме­щают параллельно самим себе с таким расчетом, чтобы все точки предмета оказа­лись над плоскостью H и перед плоско­стью V. Так как положение оси X12 оказы­вается неопределенным, то образование эпюра в этом случае не нужно связывать с вращением плоскостей вокруг координатной оси. При переходе к эпюру плоскости H и V совмещают так, чтобы разноименные проекции точек были распо­ложены на вертикальных прямых.

Безосный эпюр точек А и В (рисунок) не определяет их положения в пространстве, но позволяет судить об их относительной ориентировке. Так, отрезок △x характери­зует смещение точки А по отношению к точке В в направлении, параллельном плоскостям H и V. Иными словами, △x указывает, насколько точка А расположе­на левее точки В. Относительное смещение точки в направлении, перпендикулярном плоскости V, определяется отрезком △y, т. е. точка А в нашем примере ближе к наблюдателю, чем точка В, на расстоя­ние, равное △y.

Наконец, отрезок △z показывает превы­шение точки А над точкой В.

Сторонники безосного изучения курса начертательной геометрии справедливо указывают, что при решении многих задач можно обходиться без осей координат. Однако полный отказ от них нельзя при­знать целесообразным. Начертательная геометрия призвана подготовить будущего инженера не только к грамотному выпол­нению чертежей, но и к решению различ­ных технических задач, среди которых не последнее место занимают задачи про­странственной статики и механики. А для этого необходимо воспитывать умение ориентировать тот или иной предмет отно­сительно декартовых осей координат. Ука­занные навыки будут необходимы и при изучении таких разделов начертательной геометрии, как перспектива и аксономет­рия. Поэтому на ряде эпюров этой книги мы сохраняем изображения координатных осей. Такие чертежи определяют не только форму предмета, но и его расположение относительно плоскостей проекций.


© 2012 Рефераты, курсовые и дипломные работы.