Главная Рефераты по рекламе Рефераты по физике Рефераты по философии Рефераты по финансам Рефераты по химии Рефераты по хозяйственному праву Рефераты по цифровым устройствам Рефераты по экологическому праву Рефераты по экономико-математическому моделированию Рефераты по экономической географии Рефераты по экономической теории Рефераты по этике Рефераты по юриспруденции Рефераты по языковедению Рефераты по юридическим наукам Рефераты по истории Рефераты по компьютерным наукам Рефераты по медицинским наукам Рефераты по финансовым наукам Рефераты по управленческим наукам Психология и педагогика Промышленность производство Биология и химия Языкознание филология Издательское дело и полиграфия Рефераты по краеведению и этнографии Рефераты по религии и мифологии Рефераты по медицине Рефераты по сексологии Рефераты по информатике программированию Краткое содержание произведений |
Реферат: Микропроцессорные средства и системыРеферат: Микропроцессорные средства и системыМинистерство Образования Украины Кременчугский Государственный Политехнический Институт Контрольное задание по дисциплине “ Микропроцессорные средства и системы ” Вариант № 7 Группа Э-41-З, студент ********** Преподаватель : Михальчук В.НКременчуг 1998 Контрольная работа № 1 Преобразовать числа из десятичной системы счисления в двоичную и шестнадцатеричную : 5 ; 38 ; 93 ; 175 ; 264.
Задача № 2Преобразовать числа, записанные в прямом двоичном коде в десятичный и шестнадцатеричный код : 0011 ; 1000010 ; 00011011000 .
Задача № 3Выполнить следующие арифметические действия с двоичными числами, заданными в прямом коде : 0011 + 1000110 ; 10000001 - 1000110
Задача № 4 Выполнить следующее арифметическое действие в 8-ми разрядной сетке ( старший бит содержит знак числа ) : 5 х 25
Контрольная работа № 2 Задача № 1Определить размер памяти в килобайтах ( байтах ), если данная память адресуется с адреса A0EDH по адрес EF34H. Одна ячейка памяти занимает 8 бит Для решения определим вначале кол-во ячеек памяти, адресуемых одним разрядом при 16- теричной системе адресации.
Таким образом, начальный и конечный адреса в десятичной системе будут : A0EDH = 4096 * 10 + 256 * 0 + 16 * 14 + 1 * 13 + 1= 41198 ; EF34H = 4096 * 14 + 256 * 15 + 16 * 3 + 1 * 4 +1 = 61237 . 61237 - 41198 = 20039. 20039 = 19 * 1024 + 583. Итак, размер памяти будет 20039 байт или 19 кБ. 583 байт Задача № 2 Символьная строка расположена в ОЗУ начиная с адреса 0006H. Известно, что под каждый символ отводится одна ячейка памяти. Число символов в строке = 731. Определить адрес для обращения к последнему символу строки. Порядковый номер последней ячейки памяти в десятичной системе будет 731 + 6 = 737. Переведем 738 из десятичной системы в двоичную : 73710 = 0010111000012 Теперь переводим в 16 - теричную : 0010111000012 = 02E116 Ответ : адрес последнего символа 02E1H Задача № 3Составить программу на Ассемблере с комментариями : Подсчитать число символов в строке, расположенной в области начиная с адреса 1000H и заканчивая адресом 2000H без учета пробелов, если известно, что каждый символ занимает одну ячейку памяти и пробел кодируется как 01H. Максимальное число символов в строке 2000h -1000h=1000h=409610 После выполнения программы результат будет помещен в HL. LXI SP,3000h ; указание вершины стека LXI H,1000h ; адрес 1-го элемента => в HL LXI D,1000h ; загрузка счетчика в D,E XRA A ; обнуление аккумулятора STA 2001h ; обнуление счетчика количества символов STA 2002h ; обнуление счетчика количества символов MVI B,01h ; код пробела => в В LOOP: MOV A,M ; загрузить символ из ячейки М в аккумулятор CMP B ; проверка на код пробела JNZ COUNT ; если не совпадает, переход к COUNT, иначе - дальше INX H ; адрес следующего символа DCX D ; уменьшить счетчик JZ EXIT ; если счетчик = 0, на выход JMP LOOP ; в начало цикла COUNT: PUSH H ; выгрузить содержимое HL в стек LHLD 2001h ; загрузить HL содержимым счетчика количества символов INX H ; увеличить счетчик на 1 SHLD 2001h ; сохранить счетчик количества символов в 2001h, 2002h POP H ; восстановить в HL сохраненный адрес RET ; возврат из подпрограммы EXIT: LHLD 2001h ; загрузить HL содержимым счетчика количества символов END Задача № 4Составить программу на Ассемблере, направленную на решение математической функции : Z = lg(x+1) Натуральный и десятичный логарифмы одного и того же числа (в данном случае - выражения) связаны простым соотношением, позволяющим переходить от одного к другому :lg x = Mlnx , где M = 1/ln10 = 0,434294481903252… т.е., десятичный логарифм числа x = натуральному логарифму этого же числа, умноженному на постоянный множитель M = 0,434294481903252…, называемый модулем перехода от натуральных логарифмов к десятичным. В соответствии с вышесказанным, lg (x+1) = 0,434294481903252…* ln(x+1) Для вычисления ln(x+1) используем разложение в ряд : ln(x+1) = x-x2/2+x3/3-x4/4+x5/5-x6/6+x7/7-x8/8+… В результате алгоритм решения сводится к четырем арифметическим действиям : + ; - ; * ; /. Перед выполнением арифметических действий над числами с плавающей запятой условимся первое число размещать в регистрах EHL, второе – в регистрах DBC; результат операции оставлять в EHL. Формат представления чисел с плавающей запятой :
Где : S – знак числа ( 1-отрицательный, 0-положительный ), P0…P7 – 8-битный смещенный порядок, M1 … M15 – мантисса . Скрытый бит целой части мантиссы в нормализованных числах содержит 1
До начала вычислений число Х должно быть размещено в памяти по адресам 1000h-1002h. ;начало цикла вычислений CALC1: LXI H,1003h ; сохранение адреса первой ячейки SHLD 1020h ; для хранения XN CALL LOAD ; Загрузка Х в EHL ;цикл вычисления XN CALC2: CALL LOAD1 ;Загрузка Х в DBC CALL MULF ; Умножение чисел с плавающей точкой MOV B,H ; HL=>BC MOV C,L LHLD 1020h ;загрузить адрес ячейки памяти для хранения Хn MOV M,E ;Хn => в память INX H MOV M,B INX H MOV M,C INX H SHLD 1020h ;запомнить адрес ячейки памяти для следующего Хn MOV H,B ;BC=>HL MOV L,C LDA 1021h ;содержимое ячейки => в аккумулятор CPI 15h ;если получены все значения Хn, JZ CALC3 ;переход на CALC3 JMP CALC2 ;иначе- в начало CALC3: LXI H,1022h ; MVI M,01h ;загрузить в ячейку 1022h делитель LXI H,1003h ; SHLD 1020h ;содержимое HL => в память ;цикл вычисления XN/N CALC4: MOV B,H ; HL=>BC MOV C,L LHLD 1020h ;загрузить адрес ячейки памяти для хранения N MOV E,M ;Хn => в регистры INX H MOV B,M INX H MOV C,M SHLD 1020h ;запомнить адрес ячейки памяти для следующего Хn MOV H,B ;BC=>HL MOV L,C PUSH H ; LXI H,1022h ;N => в ячейку С MOV C,M POP H ; MVI D,00h MVI B,00h CALL DIVF ; Деление чисел с плавающей точкой MOV B,H ; HL=>BC MOV C,L LHLD 1020h ;загрузить адрес ячейки памяти для хранения Хn/N DCX H ; DCX H ; MOV M,E ;Хn/N => в память INX H MOV M,B INX H MOV M,C INX H SHLD 1020h ;запомнить адрес ячейки памяти для следующего Хn/N MOV H,B ;BC=>HL MOV L,C PUSH H ; LXI H,1022h ;N => в ячейку С MOV C,M ;инкремент N INR C MOV M,C POP H ; LDA 1021h ;содержимое ячейки => в аккумулятор CPI 15h ;если получены все значения Хn, JZ CALC5 ;переход на CALC5 JMP CALC4 ;иначе- в начало CALC5: LXI H,1003h ; SHLD 1020h ; ; CALC6: LHLD 1020h ;загрузить адрес ячейки памяти для хранения N MOV D,M ;Хn/N => в регистры D,B,C. INX H MOV B,M INX H MOV C,M INX H SHLD 1020h ;запомнить адрес ячейки памяти для следующего Хn/N ; ;вычисление ln(x+1) CALC7: CALL LOAD ; Загрузка Х в EHL CALL SUBF ; Вычитание чисел с плавающей точкой CALL CALC8 ; загрузка Хn+1/N+1 в регистры D,B,C. CALL ADDF ; Сложение чисел с плавающей точкой CALL CALC8 ; загрузка Хn+1/N+1 в регистры D,B,C. CALL SUBF ; Вычитание чисел с плавающей точкой CALL CALC8 ; загрузка Хn+1/N+1 в регистры D,B,C. CALL ADDF ; Сложение чисел с плавающей точкой CALL CALC8 ; загрузка Хn+1/N+1 в регистры D,B,C. CALL SUBF ; Вычитание чисел с плавающей точкой CALL CALC8 ; загрузка Хn+1/N+1 в регистры D,B,C. CALL ADDF ; Сложение чисел с плавающей точкой CALL CALC8 ; загрузка Хn+1/N+1 в регистры D,B,C. MVI D,00h ; загрузка модуля пере- MVI B,2Bh ; хода в DBC MVI C,2Bh CALL MULF ; Умножение ln(x+1) на модуль перехода к lg JMP EXIT ; на выход ; ;загрузка Хn+1/N+1 в регистры D,B,C. CALC8: PUSH H LHLD 1020h ;загрузить адрес ячейки памяти для хранения N MOV D,M ;Хn/N => в регистры D,B,C. INX H MOV B,M INX H MOV C,M INX H SHLD 1020h ;запомнить адрес ячейки памяти для следующего Хn/N POP H ; RET ; ; EXIT: HLT ; Останов ; ; ; ;Загрузка Х в EHL LOAD: LXI H,1000h ;загрузка в HL адреса порядка Х MOV E,M ;загрузка порядка Х в Е LHLD 1001h ;загрузка мантиссы в HL RET ; ;Загрузка Х в DBC LOAD1: PUSH H ;выгрузка в стек HL LXI H,1000h ;загрузка в HL адреса порядка Х MOV D,M ;загрузка порядка Х в D INX H ; MOV B,M ; INX H ; MOV C,M ;загрузка мантиссы в BC POP H ;загрузка из стека HL RET ; ;Образование дополнительного кода числа в регистре HL comp: mov A,H ; CMA ; MOV H,A ; MOV A,L ; CMA ; MOV L,A ; INX H ; RET ; ;Проверка знака и образование дополнительного кода NEG: MOV A,E ; ORA E ; JP NOTDK ; CALL COMP ; Образование дополнительного кода числа в регистре HL NOTDK: RET ;
;Сдвиг содержимого HL вправо на 1 бит: SHIFT: MOV A,H ; RAR ; MOV H,A ; MOV A,L ; RAR ; MOV L,A ; RET ; ;Обмен содержимого регистров EHL и DBC SWAP: PUSH B ; XTHL ; POP B ; MOV A,D ; MOV D,E ; MOV E,A ; RET ;
;Восстановление числа с плавающей точкой REC: MOV A,H ; ADD A ; MOV A,E ; RAL ; MOV E,A ; MOV A,H ; ORI 80H ; MOV H,A ; RET ; ;Преобразование числа в стандартный формат PACK: LDA SIGN ; ADD A ; MOV A,E ; MOV D,A ; RAR ; MOV E,A ; MOV A,H ; ANI 7FH ; MOV H,A ; MOV A,D ; RRC ; ANI 80H ; ORA H ; MOV H,A ; RET ; ;Сложение чисел с плавающей точкой ADDF: MOV A,D ; XRA E ; JP ADDF1 ; MOV A,D ; XRI 80H ; MOV D,A ; JMP SUBF ; ; ADDF1: MOV A,D ; ORA B ; ORA C ; JZ ADDF8 ; MOV A,E ; ORA H ; ORA L ; JNZ ADDF2 ; CALL SWAP ; Обмен содержимого регистров EHL и DBC JMP ADDF8 ; ; ADDF2: MOV A,D ; STA SIGN ; CALL REC ; CALL SWAP ; Обмен содержимого регистров EHL и DBC CALL REC ; Восстановление числа с плавающей точкой ; MOV A,E ; SUB D ; JNC ADDF3 ; CALL SWAP ; Обмен содержимого регистров EHL и DBC MOV A,E ; SUB D ; ; ; В EHL большее число, в аккумуляторе разность потенциалов ADDF3: JZ ADDF6 ; CPI 16 ; JC ADDF4 ; JMP ADDF7 ; ; ;Можно сдвигать мантиссу меньшего числа ADDF4: MOV E,A ; CALL SWAP ; Обмен содержимого регистров EHL и DBC ADDF5: ORA A ; CALL SHIFT ; Сдвиг содержимого HL вправо на 1 бит: INR E ; DCR D ; JNZ ADDF5 ; ; ;В регистре Е общий порядок. Можно складывать мантиссы ADDF6: DAD B ; JNC ADDF7 ; INR E ; JZ ADDF8 ; ORA A ; CALL SHIFT ; Сдвиг содержимого HL вправо на 1 бит: ; ADDF7: CALL PACK ; Преобразование числа в стандартный формат ; ADDF8: RET ; ;
;Вычитание чисел с плавающей точкой SUBF: MOV A,D ; XRA E ; JP SUBF1 ; MOV A,D ; XRI 80H ; MOV D,A ; JMP ADDF ; Сложение чисел с плавающей точкой SUBF1: MOV A,D ; ORA B ; ORA C ; JZ SUBFA ; MOV A,E ; ORA H ; ORA L ; JNZ SUBF2 ; CALL SWAP ; Обмен содержимого регистров EHL и DBC MOV A,E ; XRI 80H ; MOV E,A ; JMP SUBFA ; SUBF2: MOV A,E ; STA SIGN ; CALL REC ; Восстановление числа с плавающей точкой CALL SWAP ; Обмен содержимого регистров EHL и DBC CALL REC ; Восстановление числа с плавающей точкой MOV A,D ; SUB E ; JNZ SUBF3 ; MOV A,B ; CMP H ; JNZ SUBF3 ; MOV A,C ; CMP L ; JNZ SUBF3 ; MVI E,0 ; LXI H,0 ; JMP SUBFA ; ; ;операнды не равны, необходимо вычитать SUBF3: JNC SUBF4 ; CALL SWAP ; Обмен содержимого регистров EHL и DBC LDA SIGN ; XRI 80H ; STA SIGN ; ; SUBF4: MOV A,D ; SUB E ; JZ SUBF7 ; CPI 16 ; JC SUBF5 ; CALL SWAP ; Обмен содержимого регистров EHL и DBC JMP SUBF ; ; ;В регистре А разность порядков, в DBC больший операнд SUBF5: MOV E,A ; SUBF6: ORA A ; CALL SHIFT ; Сдвиг содержимого HL вправо на 1 бит: DCR E ; JNZ SUBF6 ; ; ;Вычесть мантиссы, результат в EHL SUBF7: MOV A,C ; SUB L ; MOV L,A ; MOV A,B ; SBB H ; MOV H,A ; MOV E,D ; ; ;нормализовать и проверить антипереполнение SUBF8: MOV A,H ; ORA H ; JM SUBF9 ; DCR E ; MOV A,E ; CPI 0FFH ; STC ; JZ SUBFA ; DAD H ; JMP SUBF8 ; ; SUBF9: CALL PACK ; Преобразование числа в стандартный формат SUBFA: RET ; ; ;Умножение чисел с плавающей точкой MULF: MOV A,E ; ORA H ; ORA L ; JZ MULF8 ; MOV A,D ; ORA B ; ORA C ; JNZ MULF1 ; CALL SWAP ; Обмен содержимого регистров EHL и DBC JMP MULF8 ; ; ;операнды ненулевые, можно умножать MULF1: MOV A,D ; XRA E ; STA SIGN ; CALL REC ; Восстановление числа с плавающей точкой CALL SWAP ; Обмен содержимого регистров EHL и DBC CALL REC ; Восстановление числа с плавающей точкой MOV A,D ; ADD E ; JC MULF2 ; SUI 127 ; JNC MULF3 ; JMP MULF8 ; ; MULF2: ADI 129 ; JNC MULF3 ; JMP MULF8 ; ; ;в аккумуляторе А смещенный порядок произведения MULF3: MOV C,A ; MOV E,B ; MVI D,0 ; MOV A,H ; LXI H,0 ; XCHG ; DAD H ; XCHG ; ; ;начало цикла умножения MULF4: ORA A ; RAR ; JNC MULF5 ; DAD D ; ; MULF5: JZ MULF6 ; XCHG ; DAD H ; XHG ; JMP MULF4 ; ; ;проверить нарушение нормализации MULF6: JNC MULF7 ; CALL SHIFT ; Сдвиг содержимого HL вправо на 1 бит: INR C ; STC ; JZ MULF8 ; ; MULF7: MOV E,C ; CALL PACK ; Преобразование числа в стандартный формат ; MULF8: RET ; ; ;Деление чисел с плавающей точкой DIVF: MOV A,E ; ORA H ; ORA L ; JZ DIVF7 ; MOV A,D ; ORA B ; ORA C ; STC ; JZ DIVF7 ; ;операнды не равны нулю MOV A,D ; XRA E ; STA SIGN ; CALL REC ; Восстановление числа с плавающей точкой CALL SWAP ; Обмен содержимого регистров EHL и DBC CALL REC ; Восстановление числа с плавающей точкой CALL SWAP ; Обмен содержимого регистров EHL и DBC MOV A,E ; SUB D ; JNC DIVF1 ; ADI 127 ; CMC ; JC DIVF7 ; возикло антипереполнение JMP DIVF2 ; перейти на деление мантисс ; DIVF1: ADI 127 ; прибавить смещение JC DIVF7 ; возникло антипереполнение ; ;можно начинать деление мантисс DIVF2: STA EXP ; XCHG ; LXI H,0 ; MVI A,16 ; инициализировать счетчик PUSH PSW ; JMP DIVF4 ; войти в цикл деления ; DIVF3: PUSH PSW ; DAD H ; сдвинуть влево XCHG ; частное и остаток DAD H ; XCHG ; ; DIVF4: PUSH D ; сохранить остаок в стеке MOV A,E ; вычесть делитель из остатка SUB C ; MOV E,A ; MOV A,D ; SBB B ; MOV D,A ; JC DIVF5 ; POP PSW ; удалить остаток из стека INR L ; PUSH D ; ; DIVF5: POP D ; извлечь предыдущий остаток POP PSW ; извлечь счетчик DCR A ; декремент счетчика JNZ DIVF3 ; повторить цикл деления ; деление мантисс закончено LDA EXP ; MOV E,A ; ; нормализовать частное MOV A,H ; ORA A ; JM DIVF6 ; DAD H ; DCR E ; CPI 0FFH ; проверить антипереполнение STC ; JZ DIVF7 ; возникло антипереполнение ; DIVF6: CALL PACK ; Преобразование числа в стандартный формат DIVF7: RET ; ; Контрольная работа № 3 Задача № 1Построить модель распределения адресного пространства с указанием диапазонов адресов в 16-й системе счисления. В качестве дешифратора адресов используется стандартный дешифратор, к информационным входам которого подключены линии А15, А12, А9 16-разрядной шины адреса.
В итоге адресное пространство размером в 64 Кбайт разбито на диапазоны для 8 устройств. В каждом диапазоне выделено 8 участков по 512 байт и 4 участка по 1536 байт. Задача № 2Требуется выделить зоны адресного пространства для размещения в них адресов для устройств, указанных в таблице. В качестве адресного дешифратора используется ПЗУ. Построить схемы выделения соответствующих блоков адресов и таблицу диапазонов адресов.
Так как наименьший блок имеет размер 1К ячеек, то разрешающая способность дешифратора должна обеспечивать деление адресного пространства с точностью до зон размером 1К ячеек. Анализируя шесть старших разрядов адреса, получаем необходимую точность, поскольку они делят все адресное пространство обьемом 64К ячеек на 26 = 64 части по 1К ячеек, что и требуется. Выбираем за основу ПЗУ с 10 адресными входами 2716 ( К573РФ2 ), имеющее структуру 2К*8 бит . Выходы 00 - 05 этого ПЗУ подключаем к инверсным входам выбора кристалла соответсвующих микросхем. Разрабатываем прошивку ПЗУ.
Схема дешифратора :
Карта памяти :
Задача № 3Разделить адресное пространство 64 килобайта на 18 равных частей. В качестве дешифратора адреса используется ПЛМ. Разбиение адресного пространства показать в виде схемы и таблицы. Размер одной части 65536 / 18 = 3640 байт. Т.к. 3640 * 18 = 65520, последние 16 ячеек не будут использоваться. Произведем разбиение 3640 байт на участки 2N : 3640 = 2048 + 1024 + 512 + 32 + 16 + 8 В результате получим 6 областей памяти по 18 участков в каждой : 0000h-8FFFh ( участки размером 2048 ) 9000h-D7FFh ( участки размером 1024 ) D800h-FBFFh ( участки размером 512 ) FC00h-FE3Fh ( участки размером 32 ) FE40h-FF5Fh ( участки размером 16 ) FF60h-FFEFh ( участки размером 8 ) Прошивка ПЛМ 1
Прошивка ПЛМ 2
В результате получена таблица прошивки ПЛМ для разделения адресного пространства 64 кБ на 18 несплошных равных частей. Исходя из требуемого количества произведений ( 18 * 6 = 108 ) и количества выходных функций (18), выбираем в качестве элементной базы выпускаемую фирмой ADVANCED MICRO DEVICES микросхему ПЛМ PLS30S16. Эта микросхема позволяет за счет мультиплексирования четырех адресных входов с выходами иметь от 12 до 17 входов и от 8 до 12 выходов при количестве произведений до 64. Для решения поставленной задачи берем две ПЛМ, запараллеленные входы которых подключены к шине адреса, а выходы – к входам выбора кристалла соответствующих микросхем. Технические данные на ПЛМ PLS30S16 фирмы AMD : - IC MASTER/Windows - (Title) :PLD|BIP||OTPRC Section :PROGRAMMABLE LOGIC DEVICES CAT0 :PLD Category :Bipolar CAT1 :BIP MinorA :One-Time Programmable~Registered/Combinatorial Outputs CAT3 :OTPRC MDD Code :AMD Manufacturer's Name:ADVANCED MICRO DEVICES Device Number :PLS30S16-40 Disc :*93 Date :10/26/92 Oper :BAC Transcode :E RBASE :30S16 MBase :PLS30S16 Data Book :DATASHEET Propagation Delay (:40 Maximum Clock (MHz):22.2 Product Terms :64 Flip-Flops :12 Dedicated Inputs :12-17 Bidirectional I/Os :8-12 Standby Current (mA:225 Active Current (mA):225 Pins :28 Has Image :N
20 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|