рефераты
Главная

Рефераты по рекламе

Рефераты по физике

Рефераты по философии

Рефераты по финансам

Рефераты по химии

Рефераты по хозяйственному праву

Рефераты по цифровым устройствам

Рефераты по экологическому праву

Рефераты по экономико-математическому моделированию

Рефераты по экономической географии

Рефераты по экономической теории

Рефераты по этике

Рефераты по юриспруденции

Рефераты по языковедению

Рефераты по юридическим наукам

Рефераты по истории

Рефераты по компьютерным наукам

Рефераты по медицинским наукам

Рефераты по финансовым наукам

Рефераты по управленческим наукам

Психология и педагогика

Промышленность производство

Биология и химия

Языкознание филология

Издательское дело и полиграфия

Рефераты по краеведению и этнографии

Рефераты по религии и мифологии

Рефераты по медицине

Рефераты по сексологии

Рефераты по информатике программированию

Краткое содержание произведений

Реферат: Автоматизированные измерительные и диагностические комплексы, системы

Реферат: Автоматизированные измерительные и диагностические комплексы, системы

Вологодский  ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ  УНИВЕРСИТЕТ

Кафедра химии и общей биологии

РЕФЕРАТ

На тему:  Автоматизированные измерительные и диагностические комплексы, системы

и  технические устройства.

Подготовил: студент группы ГЭ-21

                                                                                                    Асташов К. В.

                                                                     Принял: преп.  Агафонова Н. В.

Вологда

2001

СОДЕРЖАНИЕ

1. Введение в измерительную технику

·          Роль и значение измерительной техники. История развития

·          Основные понятия и определения

  1. Измерительные информационные системы.

·          Общая классификация измерительных информационных систем

·          Классификация ИИС по функциональному назначению

·          Обобщенная структура ИИС

  1. Интерфейсы измерительных информационных систем.

·          Общие понятия и определения

·          Интерфейсные функции

·          Приборные интерфейсы

·          Машинные интерфейсы

  1. Заключение.
  2. Список  литературы.

ВВЕДЕНИЕ В ИЗМЕРИТЕЛЬНУЮ ТЕХНИКУ

 Роль и значение измерительной техники. История развития

Измерительная техника - один из важнейших факторов ускорения научно-технического прогресса практически во всех отраслях народного хозяйства.

При описании явлений и процессов, а также свойств материальных тел используются различные физические величины, число которых дости­гает нескольких тысяч: электрические, магнитные, пространственные и временные; механические, акустические, оптические, химические, био­логические и др. При этом указанные величины отличаются не только ка­чественно, но и количественно и оцениваются различными числовыми значениями.

Установление числового значения физической величины осуществля­ется путем измерения. Результатом измерения является количественная характеристика в виде именованного числа с одновременной оценкой степени приближения полученного значения измеряемой величины к ис­тинному значению физической величины. Укажем, что нахождение чис­лового значения измеряемой величины возможно лишь опытным путем, т. е. в процессе физического эксперимента.

При реализации любого процесса измерения необходимы техничес­кие средства, осуществляющие восприятие, преобразование и представ­ление числового значения физических величин.

На практике при измерении физических величин применяются элект­рические методы и неэлектрические (например, пневматические, меха­нические, химические и др.).

Электрические методы измерений получили наиболее широкое рас­пространение, так как с их помощью достаточно просто осуществлять пре­образование, передачу, обработку, хранение, представление и ввод измери­тельной информации в ЭВМ.

Технические средства и различные методы измерений составляют основу измерительной техники. Любой производственный процесс харак­теризуется большим числом параметров, изменяющихся в широких преде­лах. Для поддержания требуемого режима технологической установки необходимо измерение указанных параметров. При этом, чем достовернее осуществляется измерение технологических параметров, тем лучше ка­чество целевого выходного продукта. Современные предприятия, напри­мер нефтехимического профиля с непрерывным характером производ­ства, для поддержания качества выпускаемой продукции используют измерение различных физических параметров, таких, как температура, объемный и массовый расход веществ, давление, уровень и количество вещества, время, состав вещества (плотность, влажность, содержание ме­ханических примесей и др.), напряжение, сила тока, скорость и др. При этом число требуемых для измерения параметров достигает нескольких тысяч. Например, в атомной энергетике число требуемых для измерения параметров процессов достигает десятков тысяч.

Получение и обработка измерительной информации предназначены не только для достижения требуемого качества продукции, но и органи­зации производства, учета и составления баланса количества вещества и энергии. В настоящее время важной областью применения измерительной техники является автоматизация научно-технических экспериментов. Для повышения экономичности проектируемых объектов, механизмов и машин большое значение имеют экспериментальные исследования, прово­димые на их физических моделях. При этом задача получения и обработки измерительной информации усложняется настолько, что ее эффективное решение становится возможным лишь на основе применения специализи­рованных измерительно-вычислительных средств.

Роль измерительной техники подчеркнул великий русский ученый Д.И. Менделеев: "Наука начинается с тех пор, как начинают измерять...".

Измерительная техника начала свое развитие с 40-х годов XVIII в. и характеризуется последовательным переходом от показывающих (се­редина и вторая половина XIX в.), аналоговых самопишущих (конец XIX - начало XX в.), автоматических и цифровых приборов  (середина XX в. - 50-е годы) к информационно-измерительным системам.

Конец XIX в. характеризовался первыми успехами радиосвязи и радио­электроники. Ее развитие привело к необходимости создания средств из­мерительной техники нового типа, рассчитанных на малые входные сигна­лы, высокие частоты и высокоомные входы. В этих новых средствах изме­рительной техники использовались радиоэлектронные компоненты -выпрямители, усилители, модуляторы и генераторы (ламповые, транзис­торные, на микросхемах), электронно-лучевые трубки (при построении осциллографов) и др.

Таким образом, расширение номенклатуры и качественных показате­лей средств измерительной техники неразрывно связано с достижениями радиоэлектроники. Одним из современных направлений развития изме­рительной техники, базирующейся на достижениях радиоэлектроники, являются цифровые приборы с дискретной формой представления инфор­мации. Такая форма представления результатов оказалась удобной для преобразования, передачи, обработки и хранения информации. Развитие дискретных средств измерительной техники в настоящее время привело к созданию цифровых вольтметров постоянного тока, погрешность пока­заний которых ниже 0,0001 %, а быстродействие преобразователей напря­жение - код достигает нескольких миллиардов измерений в секунду; верхний предел измерения современных цифровых частотомеров достиг гигагерца; цифровые измерители временного интервала имеют нижний предел измерения до долей пикосекунды; электрические токи измеря­ются в диапазоне от 10~16 до 105 А, а длины - в диапазоне от 10~12 (раз­мер атомов) до 3,086 • 1016 м

Широкие возможности открылись перед измерительной техникой в связи с появлением микропроцессоров (МП) и микроЭВМ. Благода­ря им значительно расширились области применения средств измеритель­ной техники, улучшились их технические характеристики, повысились надежность и быстродействие, открылись пути реализации задач, кото­рые ранее не могли быть решены.

По широте и эффективности применения МП одно из первых мест занимает измерительная техника, причем все более широко применяются МП в системах управления. Трудно переоценить значение МП и микроЭВМ при создании автоматизированных средств измерений, предназначенных для управления, исследования, контроля и испытаний сложных объектов.

Развитие науки и техники требует постоянного совершенствования средств измерительной техники, роль которой неуклонно возрастает.

Основные понятия и определения

Понятия и определения, используемые в измерительной технике, регламентируются ГОСТ 16263-70.

Измерение-это информационный процесс получения опытным путем численного отношения между данной физической величиной и неко­торым ее значением, принятым за единицу сравнения.

Результат измерения — именованное число, найденное путем измерения физической величины. Результат измерения может быть при­нят как действительное значение измеряемой величины. Одна из основных задач измерения - оценка степени приближения или разности между истинным и действительным значениями измеряемой физической величины — погрешности измерения.

Погрешность измерения - это отклонение результата из­мерения от истинного значения измеряемой величины. Погрешность изме­рения является непосредственной характеристикой точности измерения.

Точность измерения - степень близости результата измере­ния к истинному значению измеряемой физической величины.

Измерение уменьшает исходную неопределенность значения физичес­кой величины до уровня неизбежной остаточной неопределенности, опре­деляемой погрешностью измерения.

Значение погрешности измерения зависит от совершенства техничес­ких устройств, способа их использования и условий проведения экспери­мента.

Принцип измерения - это физическое явление или совокупность физи­ческих явлений, положенных в основу измерения. Примером может слу­жить измерение температуры с использованием термоэффекта и другие физические явления, используемые для проведения эксперимента, кото­рые должны быть выбраны с учетом получения требуемой точности изме­рения.

Измерительный эксперимент - это научно обоснованный опыт для получения количественной информации с требуемой или возможной точностью определения результата измерений. Проведение измерительного эксперимента предполагает наличие технических устройств, которые могут обеспечить заданную точность получения результата. Технические устрой­ства, участвующие в эксперименте, заранее нормируются по показателям точности и относятся к средствам измерений.

Средство измерений - это техническое устройство, используемое в измерительном эксперименте и имеющее нормированные характерис­тики точности.

Количественная информация, полученная путем измерения, представ­ляет собой измерительную информацию.

Измерительная информация — это количественные сведения о свой­стве или свойствах материального объекта, явления или процесса, получае­мые с помощью средств измерений в результате их взаимодействия с объектом.

Количество измерительной информации - это численная мера умень­шения неопределенности количественной оценки свойств объекта.

Взаимодействие объекта исследования и средств измерений в про­цессе эксперимента предполагает наличие сигналов, которые являются носителями информации. Важными носителями информации являются электрический ток, напряжение, импульсы и другие электрические пара­метры.

Измерительный сигнал — сигнал, функционально связанный с изме­ряемой физической величиной с заданной точностью.

Метод измерения — это совокупность приемов использования прин­ципов и средств измерений. Важное значение в измерительной технике имеет единство измерений.

Единство измерений - такое состояние измерений, при котором их результаты выражены в указанных единицах, а погрешности измерений известны с заданной вероятностью. Единство измерений позволяет срав­нивать результаты различных экспериментов, проведенных в различных условиях, выполненных в разных местах с использованием разных методов и средств измерений. Это достигается путем точного воспроизведения и хранения установленных единиц физической величины и передачи их размеров применяемым средствам измерения.

Перечисленные вопросы составляют предмет метрологии.

Метрология — это учение о мерах, это наука о методах и средствах обеспечения единства измерений и способах достижения требуемой точ­ности. Мера предназначена для воспроизведения физической величины данного размера.

Законодательная метрология — это раздел метрологии, включающий комплексы взаимосвязанных и взаимообусловленных правил, требова­ний и норм, а также другие вопросы, нуждающиеся в регламентации и контроле со стороны государства, направленные на обеспечение единства измерений и единообразия средств измерений. В соответствии с изложен­ным характеристики средств измерений, определяющие точность измере­ния с их помощью, называют метрологическими характеристиками средств измерения. Метрологические характеристики  обязательно нормируются и в установленном порядке с целью обеспечения единства измерений.

Контроль — процесс установления соответствия между состоянием! (свойством) объекта контроля и заданной нормой. В результате контроля выдается суждение о состоянии объекта.

ИЗМЕРИТЕЛЬНЫЕ ИНФОРМАЦИОННЫЕ СИСТЕМЫ
Общая классификация измерительных информационных систем

Измерительная информационная система (ИИС) в соответствии с ГОСТ 8.437—81 представляет собой совокупность функционально объеди­ненных измерительных, вычислительных и других вспомогательных техни­ческих средств для получения измерительной информации, ее преобразо­вания, обработки с целью представления потребителю (в том числе для АСУ) в требуемом виде, либо автоматического осуществления логических функций контроля, диагностики, идентификации.

В зависимости от выполняемых функций ИИС реализуются в виде измерительных систем (ИС), систем автоматического контроля (САК), технической диагностики (СТД), распознавания (идентификации) об­разов (СРО). В СТД, САК и СРО измерительная система входит как под­система.

Информация, характеризующая объект измерения, воспринимается ИИС, обрабатывается по некоторому алгоритму, в результате чего на выходе системы получается количественная информация (и только ин­формация), отражающая состояние данного объекта. Измерительные информационные системы существенно отличаются от других типов ин­формационных систем и систем автоматического управления (САУ). Так, ИИС, входящая в структуры более сложных систем (вычислительных систем связи и управления), может быть источником информации для этих систем. Использование информации для управления не входит в функции ИИС, хотя информация, получаемая на выходе ИИС, может ис­пользоваться для принятия каких-либо решений, например, для управления конкретным экспериментом.

Каждому конкретному виду ИИС присущи многочисленные особен­ности, определяемые узким назначением систем и их технологически конструктивным исполнением. Ввиду многообразия видов ИИС до на­стоящего времени не существует общепринятой классификации ИИС.

Наиболее распространенной является классификация ИИС по функ­циональному назначению. По этому признаку, как было сказано выше, будем различать собственно ИС, САК, СТД, СРО.

По характеру взаимодействия системы с объектом исследования и обмена информацией между ними ИИС могут быть разделены на актив­ные и пассивные. Пассивные системы только воспринимают информацию от объекта, а активные, действуя на объект через устройство внешних воздействий, позволяют автоматически и наиболее полно за короткое время изучить

его поведение. Такие структуры широко применяются при автоматизации научных исследований различных объектов.

В зависимости от характера обмена информацией между объектами и активными ИИС различают ИС без обратной связи и с обратной связью по воздействию. Воздействие на объект может осуществляться по заранее установленной жесткой программе либо по программе, учитывающей реакцию объекта. В первом случае реакция объекта не влияет на характер воздействия, а следовательно, и на ход эксперимента. Его результаты могут быть выданы оператору после окончания. Во втором случае резуль­таты реакции отражаются на характере воздействия, поэтому обработка ведется в реальном времени. Такие системы должны иметь развитую вы­числительную сеть. Кроме того, необходимо оперативное представление информации оператору в форме, удобной для восприятия, с тем чтобы он мог вмешиваться в ход процесса.

Эффективность научных исследований, испытательных, поверочных работ, организации управления технологическими процессами с примене­нием ИИС в значительной мере определяется методами обработки изме­рительной информации.

Операции обработки измерительной информации выполняются в устройствах, в качестве которых используются специализированные либо универсальные ЭВМ. В некоторых случаях функции обработки результа­тов измерения могут осуществляться непосредственно в измерительном тракте, т. е. измерительными устройствами в реальном масштабе времени.

В системах, которые содержат вычислительные устройства, обработка информации может производиться как в реальном масштабе времени, так и с предварительным накоплением информации в памяти ЭВМ, т. е. со сдвигом по времени.

При исследовании сложных объектов или выполнении многофактор­ных экспериментов применяются измерительные системы, сочетающие высокое быстродействие с точностью. Такие ИИС характеризуются боль­шими потоками информации на их выходе.

Значительно повысить эффективность ИИС при недостаточной апри­орной информации об объекте исследования можно за счет сокращения избыточности информации, т. е. сокращения интенсивности потоков изме­рительной информации. Исключение избыточной информации, несущест­венной с точки зрения ее потребителя, позволяет уменьшить емкость устройств памяти, загрузку устройств обработки данных, а следователь­но, и время обработки информации, снижает требования к пропускной способности каналов связи.

При проектировании и создании ИИС большое внимание уделяется проблеме повышения достоверности выходной информации и снижения вероятностей возникновения (или даже исключения) нежелательных ситуаций. Этого можно достичь, если на ИИС возложить функции само­контроля, в результате чего ИИС способна осуществлять тестовые провер­ки работоспособности средств системы и тем самым сохранять метроло­гические характеристики тракта прохождения входных сигналов, проверять достоверность результатов обработки информации, получаемой посредством измерительных преобразований, и ее представления.

Все более широкое развитие получают системы, предусматривающие автоматическую коррекцию своих характеристик — самонастраивающие­ся (самокорректирующиеся) системы.

Введение в такие системы свойств автоматического использования результатов самоконтроля — активного изучения состояния ИИС — и приспособляемости к изменению характеристик измеряемых сигналов или к изменению условий эксплуатации делает возможным обеспечение заданных параметров системы.

Классификация ИИС по функциональному назначению

В зависимости от функционального назначения структуры ИИС под­разделяют по принципу построения. Рассмотрим основные особенности и отличия.

Собственно измерительные системы используются для различного рода комплексных исследований научного характера. Они предназначены для работы с объектами, характеризующимися до начала эксперимента минимумом априорной информации. Цель создания таких систем заклю­чается в получении максимального количества достоверной измеритель­ной информации об объекте для составления алгоритмического описа­ния его поведения.

Обратная связь системы с объектом отсутствует или носит вспомо­гательный характер. Как отмечалось, информация, полученная на выходе ИИС, может использоваться для принятия каких-либо решений, создания возмущающих воздействий, но не для управления объектом. ИИС пред­назначена для создания дополнительных условий проведения эксперимента, для изучения реакции объекта на эти воздействия. Следовательно, использо­вание информации не входит в функции ИИС. Эта информация предостав­ляется человеку-оператору или поступает в средства автоматической об­работки информации.

Для измерительных систем характерны:

·     более высокие по отношению к системам другого вида требования к метрологическим характеристикам;

·     более широкий спектр измеряемых физических величин и в особен­ности их количество (число измерительных каналов);

·     необходимость в средствах представления информации; это связано с тем, что основной массив информации с выхода систем передается чело­веку для принятия им решения об изменении условий проведения экспе­римента, его продолжении или прекращении. Поэтому определяющим требованием является неискаженное, наглядное и оперативное представ­ление текущей информации с учетом динамики ее обновления и быстро­действия системы, обеспечивающее удобство восприятия и анализа чело­веком;

·     большой объем внешней памяти для систем, в которых обработка и анализ результатов осуществляется после завершения эксперимента с помощью набора различных средств обработки и предоставления информации.

Разновидности ИС

·     ИС для прямых измерений, т. е. независимых измерений дис­кретных значений непрерывных величин;

·     статистические ИС, предназначенные для измерения статистичес­ких характеристик измеряемых величин;

·     системы, предназначенные для раздельного измерения зависи­мых величин.

Входными в ИС для прямых измерений являются величины, воспри­нимаемые датчиками или другими входными устройствами системы. Задача таких ИС заключается в выполнении аналого-цифровых преобра­зований множества величин и выдаче полученных результатов измерения.

В рассматриваемых ИС основные типы измеряемых входных величин могут быть сведены либо к множеству изменяющихся во времени вели­чин, либо к изменяющейся во времени t и распре­деленной по пространству Л непрерывной функции х (t, Л). При изме­рении непрерывная функция х (t, Л) представляется множеством дискрет.

Измерительные системы, производящие измерения дискрет функции  x(t, Л), основаны на использовании многоканальных, многоточечных, мультиплицированных и сканирующих структур.

Многоканальные системы объединяются в один из самых распространенных классов измерительных систем параллельного действия, применяемых во всех отраслях народного хозяйства. Основные причины столь широкого распространения многоканальных ИС заключаются в возмож­ности использования стандартных, относительно простых, измеритель­ных приборов, в наиболее высокой схемной надежности таких систем, в возможности получения наибольшего быстродействия при одновре­менном получении результатов измерения, в возможности индивидуального подбора СИ к измеряемым величинам.

Недостатки таких систем — сложность и большая стоимость по срав­нению с другими системами.

В измерительных системах последовательного действия - сканирую­щих измерительных системах — операции получения информации выпол­няются последовательно во времени с помощью одного канала измерения. Если измеряемая величина распределена в пространстве или собственно координаты точки являются объектом измерения, то восприятие инфор­мации в таких системах выполняется с помощью одного сканирующего датчика.

Сканирующие системы находят применение при расшифровке гра­фиков. В медицине, геофизике, метрологии, при промышленных испыта­ниях, во многих отраслях народного хозяйства и при научных исследова­ниях затрачивается значительное время на измерение параметров графичес­ких изображений и представление результатов измерения в цифровом виде. Для указанных целей промышленностью выполняются различные специализированные полуавтоматические расшифровочные устройства и системы ("Силуэт").

Сканирование может выполняться непосредственно воспринимающим элементом или сканирующим лучом при неподвижном воспринимающем элементе. Такими элементами могут быть оптико-механические или электронно-развертывающие  устройства.

Для измерения координат графических изображений применяются различные акустические системы. В геологии и картографии, океанологии и других областях при автоматизации проектирования осуществляются измерения и выдача в цифровом виде координат сложных графических изображений на фото носителях, чертежах и документах. При этом генера­тор (полуавтоматические измерения) лишь указывает точки изображения, координаты которых необходимо измерить. Используемые здесь датчики, как правило, осуществляют преобразование координат точек в интервалы времени прохождения световых или акустических импульсов между точ­ками, координаты которых были измерены.

При использовании в устройствах ЭВМ одновременно со считыванием координат осуществляют обработку графических изображений по задан­ной программе.

Голографические ИС (ГИС). Основу датчиков составляют лазеры, представляющие собой когерентные источники света, когерентная опти­ка и оптоэлектронные преобразователи. Голографические измерительные системы отличаются высокой чув­ствительностью и повышенной точностью, что послужило основой широ­кого их применения в голографической интерферометрии. Голографическая интерферометрия обеспечивает бесконтактное измерение и одно­временное получение информации от множества точек наблюдаемой по­верхности с использованием меры измерения — длины световой волны, известной с высокой метрологической точностью.

Выполнение условий минимальной сложности ИС приводит к необ­ходимости последовательного многократного использования отдельных устройств измерительного тракта, а следовательно, к применению ИС параллельно-последовательного действия, которые носят название многоточечных ИС. Работа таких ИС основана на принципе квантования измеряе­мых непрерывных величин по времени.

Измерительные системы с общей образцовой величиной — мультипли­цированные развертывающие измерительные системы — содержат мно­жество параллельных каналов. Структура системы включает датчики и устройство сравнения (одно для каждого канала измерения), источник образцовой величины и одно или несколько устройств представления из­мерительной информации. Мультиплицированные развертывающие изме­рительные системы позволяют в течение цикла изменения образцовой величины (развертки) выполнять измерение значений, однородных по физической природе измеряемых величин, без применения коммутацион­ных элементов в канале измерения. Такие ИС имеют меньшее количество элементов по сравнению с ИС параллельного действия и могут обеспечить практически такое же быстродействие.

Статистические измерительные системы. Статистический анализ слу­чайных величин и процессов широко распространен во многих отраслях науки и техники. При статистическом анализе используются законы рас­пределения вероятностей и моментные характеристики, а также корреля­ционные спектральные функции.

Системы для измерения законов распределения вероятностей слу­чайных процессов - анализаторы вероятностей - могут быть одно- и много­канальными.

Одноканальные анализаторы вероятностей за цикл анализа реализации x(t) позволяют получить одно дискретное значение функции или плот­ности распределения исследуемого случайного процесса.

Многоканальные анализаторы позволяют получать законы распреде­ления амплитуд импульсов и интервалов времени между ними, амплитуд непрерывных временных и распределенных в пространстве случайных процессов и др. Многоканальные анализаторы широко используются в ядерной физике, биологии, геофизике, в химическом и металлургическом производствах. При этом используются аналоговые, цифровые и смешан­ные принципы построения анализаторов.

Существует два основных метода построения корреляционных изме­рительных систем. Первый из них связан с измерением коэффициентов корреляции и последующим восстановлением всей корреляционной функ­ции, второй - с измерением коэффициентов многочленов, аппроксими­рующих корреляционную функцию.

По каждому из этих методов система может действовать последова­тельно, параллельно, работать с аналоговыми или кодоимпульсными сиг­налами и в реальном времени.

Значительный класс статистических ИС - корреляционные экстремаль­ные ИС — основан на использовании особой точки — экстремума корре­ляционной функции при нулевом значении аргумента. Корреляционные экстремальные ИС широко применяются в навигации, радиолокации, металлообрабатывающей, химической промышленности и в других об­ластях для измерения параметров движения разнообразных объектов.

Выделение сигналов на фоне шумов, измерение параметров движе­ния, распознавание образов, идентификация, техническая и медицинская диагностика - это неполный перечень областей практического приме­нения методов и средств корреляционного анализа. В настоящее время подавляющий объем статистического анализа выполняется корреляцион­ными ИС, содержащими ЭВМ, либо отдельными устройствами со сред­ствами микропроцессорной техники.

Системы спектрального анализа предназначены для количественной оценки спектральных характеристик измеряемых величин. Существую­щие методы спектрального анализа основываются на применении частот­ных фильтров или на использовании ортогональных преобразований слу­чайного процесса и преобразований Фурье над известной корреляционной функцией.

Различают параллельный фильтровый анализ (полосовые избиратель­ные фильтры-резонаторы), последовательный фильтровый анализ (пере­страиваемые фильтры и гетеродинные анализаторы), последовательно-параллельный анализ.

Достоинства бесфильтровых анализаторов, основанных на определе­нии коэффициентов ряда Фурье, связаны с получением высокой разре­шающей способности, что позволяет их использовать для детального ана­лиза определенных участков спектра.

Системы для раздельного измерения взаимосвязанных величин при­меняются в следующих случаях:

·     исследуемое явление или объект характеризуется множеством неза­висимых друг от друга величин и при нали­чии селективных датчиков можно осуществить измерение всех значений

·     при независимых, но не селективных датчиках, сигналы на вы­ходе которых содержат составляющие от нескольких величин, встает задача выделения каждой измеряемой величины;

·     если элементы связаны между собой, то также необходимо осуществить раздельное измерение величин х.

Наиболее типичные задачи взаимно связанных измерений - измерение концентрации составляющих многокомпонентных жидких, газовых или твердых смесей или параметров компонентов сложных элек­тронных цепей без гальванического расчленения.

При раздельном измерении взаимосвязанных величин осуществляется воздействие на многокомпонентное соединение в целях селекции и измере­ния нужного компонента. Для механических и химических соединений существуют различные методики и средства такого раздельного измерения: масс-спектрометрия, хроматография, люминесцентный анализ и др.

Системы, измеряющие коэффициенты приближающих многочленов, называются аппроксимирующими (АИС) и предназначены для количест­венного описания величин, являющихся функциями времени, простран­ства или другого аргумента, а также их обобщающих параметров, опреде­ляемых видом приближающего многочлена.

Информационные операции в АИС выполняются последовательным, параллельным или смешанным способом. АИС реализуются с разомкнутой или замкнутой информационной обратной связью, в виде аналоговых или цифровых устройств.

При создании и использовании АИС выбирают тип приближающего многочлена и с учетом заданной погрешности аппроксимации определяют порядок функции.

Реализация задач АИС требует знания априорных сведений об исход­ной функции, учета метрологических требований к измерениям и др. При этом в качестве базисных функций могут быть выбраны ряды Фурье, разложения Фурье-Уолша, Фурье-Хаара, многочлены Чебышева, Лагранжа, Лежандра, Лагерра и др.

К основным областям применения АИС относятся измерение статис­тических характеристик случайных процессов и характеристик нелиней­ных объектов, сжатие радиотелеметрической информации и информации при анализе изображений, фильтрация-восстановление функций, генерация сигналов заданной формы.

Системы автоматического контроля (САК). Системы автоматичес­кого контроля предназначены для контроля технологических процессов, при этом характер поведения и параметры их известны. В этом случае объ­ект контроля рассматривается как детерминированный.

Эти системы осуществляют контроль соотношения между текущим (измеренным) состоянием объекта и установленной "нормой поведения" по известной математической модели объекта. По результатам обработки полученной информации выдается суждение о состоянии объектов конт­роля. Таким образом, задачей САК является отнесение объекта к одному из возможных качественных состояний, а не получение количественной информации об объекте, что характерно для ИС.

В САК благодаря переходу от измерения абсолютных величин к от­носительным (в процентах "нормального" значения) эффективность ра­боты значительно повышается. Оператор САК при таком способе коли­чественной оценки получает информацию в единицах, непосредственно характеризующих уровень опасности в поведении контролируемого объ­екта (процесса).

Как правило, САК имеют обратную связь, используемую для воздей­ствия на объект контроля. В них внешняя память имеет значительно мень­ший объем, чем объем памяти ИС, так как обработка и представление информации ведутся в реальном ритме контроля объекта.

Объем априорной информации об объекте контроля в отличие от ИС достаточен для составления алгоритма контроля и функционирова­ния самой САК, предусматривающего выполнение операций по обработ­ке информации. Алгоритм функционирования САК определяется пара­метрами объекта контроля. Например, существуют параметры, кратко­временное отклонение которых от "нормального" значения может по­влечь за собой возникновение аварийной ситуации; кратковременное от­клонение других параметров существенно не влияет на нормальный ход процесса и поведение объекта; третья группа параметров используется для расчета технико-экономических показателей (расход сырья, выход основ­ного продукта и т. д.).

По сравнению с ИС эксплуатационные параметры САК более высокие: длительность непрерывной работы, устойчивость и воздействие промыш­ленных помех, климатические и механические воздействия.

В настоящее время в основу классификации САК положена общая классификация ИИС с учетом специфики функций, выполняемых САК.

Системы автоматического контроля могут быть встроенные в объект контроля и внешние по отношению к нему. Первые преимущественно при­меняются в сложном радиоэлектронном оборудовании и входят в комп­лект такого оборудования. Вторые обычно более универсальны.

Системы технической диагностики (СТД). Они относятся к классу ИИС, так как здесь обязательно предполагается выполнение измеритель­ных преобразований, совокупность которых составляет базу для логичес­кой процедуры диагноза. Цель диагностики - определение класса состоя­ний, к которому принадлежит состояние обследуемого объекта.

Диагностику следует рассматривать как совокупность множества возможных состояний объекта, множества сигналов, несущих информа­цию о состоянии объекта, и алгоритмы их сопоставления.

Объектами технической диагностики являются технические системы. Элементы любого технического объекта обычно могут находиться в двух состояниях: работоспособном и неработоспособном. Поэтому задачей систем технической диагностики СТД является определение работоспособ­ности элемента и локализация неисправностей.

Основные этапы реализации СТД:

·     выделение состояний элементов объекта диагностики контролируемых величин, сбор необходимых статистических данных, оценка затрат труда на проверку;

·     построение математической модели объекта и разработка програм­мы проверки объекта;

·     построение структуры диагностической системы.

Элементы объекта диагноза, как правило, недоступны для непосред­ственного наблюдения, что вызывает необходимость проведения проце­дуры диагноза без разрушения объекта. В силу этого в СТД преимуществен­но применяются косвенные методы измерения и контроля.

В отличие от ИС и САК система технической диагностики имеет иную организацию элементов структуры и другой набор используемых во вход­ных цепях устройств и преобразователей информации. Входящий в состав структуры СТД набор средств обработки, анализа и представления информации может оказаться значительно более развитым, чем в ИС и САК. В СТД определение состояния объекта осуществляется программными средствами диагностики. При поиске применяется комбинационный или последовательный метод.

При комбинационном поиске выполняется заданное число проверок независимо от порядка их осуществления. Последовательный поиск свя­зан с анализом результатов каждой проверки и принятием решения на проведение последующей проверки. Системы технической диагностики подразделяют на специализированные и универсальные.

По целевому назначению различают диагностические и прогнозирую­щие СТД. Диагностические системы предназначены для установления точного диагноза, т. е. для обнаружения факта неисправности и локали­зации места неисправности. Прогнозирующие СТД по результатам про­верки в предыдущие моменты времени предсказывают поведение объекта в будущем.

По виду используемых сигналов СТД подразделяют на аналоговые и кодовые. По характеру диагностики или прогнозирования различают статистические и детерминированные СТД. При статистической оценке объекта решение выносится на основании ряда измерений или проверок сигналов, характеризующих объект. В детерминированной СТД пара­метры измерения реального объекта сравниваются с параметрами образцовой системы (в СТД должны храниться образцовые параметры прове­ряемых узлов). Системы технической диагностики подразделяют также на автоматические и полуавтоматические, а по воздействию на проверяе­мые объекты они могут быть пассивными и активными. В пассивной СТД результат диагностики представляется на световом табло либо в виде ре­гистрационного документа, т. е. результатом проверки является только сообщение о неисправности. При активной проверке СТД автоматически подключает резерв или осуществляет регулирование параметров отдельных элементов. Конструктивно СТД подразделяют на автономные и встроенные (или внешние и внутренние).

Системы распознавания образов (СРО). Предназначены для опреде­ления степени соответствия между исследуемым объектом и эталонным образом.

Для задач классификации биологических объектов и дактилоскопи­ческих снимков, опознавания радиосигналов и других создаются специаль­ные системы распознавания образов. Эти системы осуществляют  распознавание образов через количественное описание признаков, характеризую­щих данный объект исследования.

Процесс распознавания реализуется комбинацией устройств обработ­ки и сравнения обработанного изображения (описания образа) с эталон­ным образом, находящимся в устройстве памяти. Распознавание осущест­вляется по определенному, заранее выбранному, решающему правилу. При абсолютном описании образа изображение восстанавливается с задан­ной точностью, а относительное описание с набором значений отличитель­ных признаков (например, спектральных характеристик), не обеспечивая полное воспроизведение изображения.

Как пример СРО можно привести голографические распознающие системы (PC). В этих системах распознавание изображений осуществля­ется с относительно высокой скоростью (от 103 до 106 изображений в секунду благодаря параллельному анализу голограмм). Голографические PC нашли широкое применение при поиске химических элементов по спектрам их поглощения и в навигации при определении положения объ­екта по наземным ориентирам. В голографических PC удачно сочетаются высокая производительность оптических методов сбора и обработка инфор­мации с логическими и вычислительными возможностями ЭВМ.

Телеизмерительные информационные системы (ТИИС). Они отлича­ются от ранее рассмотренных в основном длиной канала связи. Канал связи является наиболее дорогой и наименее надежной частью этих сис­тем, поэтому для ТИИС резко возрастает значение таких вопросов, как надежность передачи информации.

Телеизмерительные ИИС могут быть одно- или многоканальными. Они предназначаются для измерения параметров сосредоточенных и рассредоточенных объектов. В зависимости от того, какой параметр несущего сигнала используется для передачи информации, можно выделить ТИИС:

·     интенсивности, в   которых  несущим параметром является значение тока или напряжения;

·     частотные (частотно-импульсные), в которых измеряемый параметр меняет частоту синусоидальных колебаний или частоту следования им­пульсов;

·     времяимпульсные, в которых несущим параметром является дли­тельность импульсов; к ним же относятся фазовые системы, в которых измеряемый параметр меняет фазу синусоидального сигнала или сдвиг во времени между двумя импульсами;

·     кодовые (кодоимпульсные), в которых измеряемая величина переда­ется какими-либо кодовыми комбинациями.

Системы интенсивности подразделяются на системы тока и системы напряжения в зависимости от того, какой вид сигнала используется для информации. Этим системам присущи сравнительно большие погреш­ности, и они используются при передаче информации на незначительное расстояние.

Частотные ТИИС имеют большие возможности, поскольку в них прак­тически отсутствуют погрешности, обусловленные влиянием линий связи, и возрастает дальность передачи информации по сравнению с системами интенсивности.

Время-импульсные системы по длительности применяемых для пере­дачи импульсов подразделяют на две группы: системы с большим перио­дом (от 5 до 50 с) и системы с малым периодом (менее десятых долей секунды).

Длиннопериодные системы применяются в основном для измерения медленно меняющихся неэлектрических величин (уровень жидкости, давление газов и др.).

Короткопериодные системы имеют большое быстродействие. Для передачи коротких импульсов требуется большая полоса частот, пропус­каемых каналом связи. В силу этого такие системы с проводными лини­ями связи (ЛС) используются редко.

В последнее время получили широкое развитие адаптивные ТИИС, в которых алгоритмы работы учитывают изменение измеряемой величи­ны или окружающих условий (воздействий).

Основная цель применения адаптивных ТИИС состоит в исключении избыточности выдаваемой системой измерительной информации и в со­хранении или оптимизации метрологических характеристик (помехоус­тойчивости, быстродействия, погрешностей) при изменении условий из­мерительного эксперимента.

В адаптивных ТИИС используются алгоритмы адаптивной дискрети­зации и могут быть использованы алгоритмы адаптивной аппроксимации.

Обобщенная структура ИИС

Рассмотренные выше измерительные информационные системы пока­зывают, что почти для каждого типа ИИС используется цепочка из аппарат­ных модулей (измерительных, управляющих, интерфейсных, обрабатываю­щих). Таким образом, обобщенная структурная схема ИИС содержит:

·     множество различных первичных измерительных преобразователей, размещенных в определенных точках пространства стационарно или перемещающихся в пространстве по определенному закону;

·     множество измерительных преобразователей, которое может состо­ять из преобразователей аналоговых сигналов, коммутаторов аналоговых сигналов, аналоговых вычислительных устройств, аналоговых устройств памяти, устройств сравнения аналоговых сигналов, аналоговых каналов связи, аналоговых показывающих и регистрирующих измерительных приборов;

·     группу  аналого-цифровых преобразователей, а также аналоговых устройств допускового контроля;

·     множество цифровых устройств, содержащее формирователи им­пульсов, преобразователи кодов, коммутаторы, специализированные цифровые вычислительные устройства, устройство памяти, устройство сравнения кодов, каналы цифровой связи, универсальные программируе­мые вычислительные устройства - микропроцессоры, микроЭВМ и др.;

·     группу цифровых устройств вывода, отображения и регистрации, которая содержит формирователи кодоимпульсных сигналов, печатающие устройства записи на перфоленту и считывания с перфоленты, накопите­ли информации на магнитной ленте, на магнитных дисках и на гибких магнитных дисках, дисплеи, сигнализаторы, цифровые индикаторы;

·     множество цифроаналоговых преобразователей;

·     указанные функциональные блоки соединяются между собой через стандартные интерфейсы или устанавливаются жесткие связи;

·     интерфейсные устройства (ИФУ), содержащие системы шин, интер­фейсные узлы  и интерфейсные устройства аналоговых блоков, служа­щие главным образом для приема командных сигналов и передачи ин­формации о состоянии блоков. Например, через интерфейсные устрой­ства могут передаваться команды на изменение режима работы, на под­ключение заданной цепи с помощью коммутатора;

·     устройство управления, формирующее командную информацию, принимающее информацию от функциональных блоков и подающее ко­манды на исполнительные устройства для формирования воздействия на объект исследования (ОИ).

Однако не для всякой ИИС требуется присутствие всех блоков. Для каждой конкретной системы количество блоков, состав функций и связи между блоками устанавливаются услови­ями проектирования.

ИНТЕРФЕЙСЫ ИЗМЕРИТЕЛЬНЫХ СИСТЕМ

Общие понятия и определения

В настоящее время ИИС находят все более широкое применение в различных областях науки и техники. Они применяются в качестве компонентов сложных информационно-вычислительных комплексов и систем автоматизации. Особенно важную роль играют автоматические ИИС, ис­пользующие ЭВМ для программного управления работой системы.

Возросшие объемы проводимых измерений привели к широкому использованию программно-управляемых СИ. При этом возросшие требо­вания к характеристикам СИ оказали существенное влияние на методы сопряжения устройств, образующих ИИС.

Информационно-измерительные системы содержат ряд подсистем: измерительную, сбора, преобразования, предварительной обработки данных и подсистемы управления СИ в целом. Все подсистемы в ИИС соединены между собой в единую систему. Кроме того, ИИС в настоящее время проек­тируют на основе агрегатного (модульного) принципа, по которому уст­ройства, образующие систему, выполняются в виде отдельных, самостоя­тельных изделий (приборов, блоков). В составе ИИС эти устройства выпол­няют определенные операции и взаимодействуют друг с другом, переда­вая информационные и управляющие сигналы через систему сопряжения.

Для унифицированных систем сопряжения между устройствами, участ­вующими в обмене информации, стал общепринятым термин интерфейс (interface). Под интерфейсом (или сопряжением) понимают совокуп­ность схемотехнических средств, обеспечивающих непосредственное взаимодействие составных элементов ИИС (ГОСТ 15971—74). Устройства подсоединяются к системе сопряжения и объединяются в ИИС по опреде­ленным правилам, относящимся к физической реализации сопряжении. Конструктивное исполнение этих устройств, характеристики вырабатывае­мых и принимаемых блоками сигналов и последовательности выдавае­мых сигналов во времени позволяют упорядочить обмен информацией между отдельными функциональными блоками (ФБ).

Под интерфейсной системой понимают совокупность логических уст­ройств, объединенных унифицированным набором связей и предназначен­ных для обеспечения информационной, электрической и конструктивной совместимости. Интерфейсная система также реализует алгоритмы взаи­модействия функциональных модулей в соответствии с установленными нормами и правилами.

Возможны два подхода к организации взаимодействия элементов системы и построению материальных связей между ними:

жесткая унификация и стандартизация входных и выходных пара­метров элементов системы;

использование функциональных блоков с адаптивными характерис­тиками по входам-выходам.

На практике часто сочетают оба подхода. Стандартизация интерфей­сов позволяет:

·     проектировать ИИС различных конфигураций;

·     значительно сократить число типов СИ и их устройств сопряжения;

·     ускорить и упростить разработку отдельных СИ и ИИС в целом;

·     упростить техническое обслуживание и модернизацию ИИС;

·     повысить надежность ИИС.

Применение развитых стандартных интерфейсов при организации ИИС позволяет обеспечить быструю компоновку системы и разработку программ управления СИ.

Основной структурной единицей ИИС является функциональный блок ФБ, который представляет собой один или несколько объединенных и взаимодействующих между собой измерительных преобразователей. Взаимодействие ФБ осуществляется через интерфейсные блоки ИБ по командам, организующим обмен данными. Команды управления форми­руются в управляющем блоке УБ и воздействуют на интерфейсные блоки через контроллер (К).

Между ФБ  ИИС осуществляется обмен информационными и управляющими сообщениями. Информационное сообщение содержит сведения о значении измеряемого параметра, диапазоне измерения, времени изме­рения, результатах контроля состояния измерительных каналов и др. Управляющее сообщение содержит сведения о режиме работы ФБ, поряд­ке выполнения ими последовательности операций во времени, команде контроля состояния измерительных каналов.

Интерфейс может быть общим для устройств разных типов, наиболее распространенные интерфейсы определены международными, государ­ственными и отраслевыми стандартами. Стандарт (ГОСТ 26016—81 "Еди­ная система стандартов приборостроения. Интерфейсы, признаки клас­сификации и общие требования") включает четыре признака классифика­ции: способ соединения комплектов системы (магистральный, радиаль­ный, цепочечный, комбинированный); способ передачи информации (па­раллельный, последовательный, параллельно-последовательный); принцип обмена информацией (асинхронный, синхронный); режим передачи ин­формации (двусторонняя одновременная передача, двусторонняя пооче­редная передача, односторонняя передача).

Указанные признаки позволяют характеризовать только определен­ные аспекты организации интерфейсов.

Более полная характеристика и систематизация интерфейсов могут быть выполнены при условии классификации по нескольким совокупнос­тям признаков: функциональному назначению, логической функциональ­ной организации и физической реализации.

К основным характеристикам интерфейса относятся следующие: функциональное назначение; структура или тип организации связей; принцип обмена информацией; способ обмена данными; режим обмена данными; номенклатура шин и сигналов; количество линий; количество линий для передачи данных; количество адресов; количество команд; быстродействие; длина линий связи; число подключаемых устройств; тип линии связи.

Соединение отдельных приборов и блоков между собой осуществля­ется линиями связи или линиями интерфейса. Линии интерфейса могут объединяться в группы для выполнения одной из операций в программно-управляемом процессе передачи данных. Эти группы линий называются шинами интерфейса. Назначение отдельных линий и шин, их номенклатура и взаимное расположение в системе (топологии) являются базовыми при рассмотрении функционирования любого интерфейса.

В отечественных и зарубежных микропроцессорных измерительно-управляющих вычислительных системах (МП ИУВС) распространены асинхронные мультиплексные интерфейсы с параллельным способом передачи информации: 8-разрядные интерфейсы Microbus; 16-разрядные интерфейсы общая шина (Unibus), Microbus, интерфейс микроЭВМ "Элек­троника 60" (Q-bus, LSI-11).

Для связи датчиков информации, исполнительных элементов, терри­ториально удаленных от процессора на десятки и сотни метров, в МП ИУВС применяют интерфейсы периферийных устройств. В таких интер­фейсах используются как параллельный, так и последовательный спосо­бы обмена информацией. При этом последний по причине существенного упрощения собственно линии связи, а следовательно, и снижения стои­мости наиболее предпочтителен, если при этом обеспечивается необходи­мая скорость передачи информации.

В последнее время в связи с развитием микро- и мультипроцессорных ИУВС, отдельные микропроцессоры или устройства ввода-вывода кото­рых могут отстоять друг от друга территориально на сотни метров (на­пример, заводская или цеховая ИУВС), все более широко применяются системные интерфейсы или интерфейсы локальных сетей. Системный интерфейс, как правило, имеет многоуровневую архитектуру (совокуп­ность) аппаратных и программных средств.

Из зарубежных локальных сетей наиболее известны DEC net фирмы "Digital Equipment Corp", z-net фирмы "Zilog Inc", сеть фирмы IBM, Om minet фирмы "Corvus Inc" и др.

При построении ИИС, согласно ГОСТ 22316-77, должны применяться следующие структуры соединения функциональных блоков  между собой:

·     цепочечное соединение, при котором единственный выход предшест­вующего блока соединен    с единственным входом последующего блока, так что соединенные блоки образуют цепь;

·     радиальное соединение, при котором один блок соединен одновремен­но с несколькими блоками, причем с каждым из них отдельной независи­мой линией;

·     магистральное соединение, при котором входы и (или) выходы сопрягаемых блоков соединены одной общей линией.

В цепочечной структуре каждая пара источник-прием­ник соединена попарно линиями от выходов предыдущих ФБ ко входам последующих, обмен данными происходит непосредственно между бло­ками или приборами. Функции управления распределены между этими устройствами. Цепочечную структуру интерфейсов используют, как пра­вило, в несложных системах с несколькими функциональными уст­ройствами.

В системе, выполненной по радиальной структуре, име­ется центральное устройство - контроллер, с которым каждая пара ис­точник-приемник связана с помощью индивидуальной группы шин. Бло­ки и приборы, подключаемые к контроллеру, могут изменять свои места при соответствующем изменении программы работы контроллера. Под управлением контроллера происходит обмен данными между каждым устройством и контроллером. Связи между управляющим устройством и одним из устройств-источников или приемников сигналов может осу­ществляться как по инициативе контроллера, так и по инициативе уст­ройств (абонентов). В последнем случае одно из устройств вырабатывает сигнал запроса на обслуживание, а контроллер идентифицирует запраши­ваемое устройство. Когда контроллер готов к обмену данными, логически подключаются цепи связи и начинается процесс обмена. Эти цепи остаются подключенными, пока не будет передана нужная порция информации.

Контроллер может производить обмен данными только с одним из устройств. В случае одновременного поступления запросов от двух и более абонентов по системе приоритетов будет установлена связь с уст­ройством, имеющим наивысший приоритет. Приоритет присваивается приборам и блокам в зависимости от их типа, технических характерис­тик и важности поступающей информации. В интерфейсах с радиальной структурой чаще всего приоритет зависит от места подключения кабеля, соединяющего абонент (ФБ) с контроллером.

Радиальное соединение функциональных блоков позволяет достаточ­но просто и быстро осуществлять адресацию и идентификацию требуе­мого ФБ.

К недостаткам радиальной структуры можно отнести большую дли­ну соединительных линий, а также сложность контроллера, что приводит к увеличению стоимости ИС.

В системах с магистральной структурой вместо группы индивидуальных шин имеются коллективные шины, к которым подсоеди­няются все источники и приемники информации и контроллер.

По принципу обмена информацией интерфейсы подразделяют на па­раллельные, последовательные и параллельно-последовательные. При параллельной передаче цифровых данных численное значение величины, содержащее т битов, транслируют по т информационным линиям. Это сообщение одновременно и полностью может быть введено в интерфейс, а также воспринято приемником. Интерфейсные устройства параллель­ного ввода-вывода информации позволяют согласовать во времени процесс обмена данными между ЭВМ и периферийным устройством.

Интерфейсные функции

Основные функции интерфейса заключаются в обеспечении информа­ционной, электрической и конструктивной совместимости между функ­циональными элементами системы

Информационная совместимость - это согласованность взаимодей­ствий функциональных элементов системы в соответствии с совокупностью логических условий. Логические условия определяют:

·     структуру и состав унифицированного набора шин;

·     набор процедур по реализации взаимодействия и последовательности их выполнения для различных режимов функционирования;

·     способ кодирования и форматы данных, команд, адресной информации и информации состояния;

·     временные соотношения между управляющими сигналами.

 Логические условия информационной совместимости определяют функциональную и структурную организацию интерфейса и для большин­ства интерфейсов стандартизируются. Условия информационной совмес­тимости определяют объем и сложность схемотехнического оборудования и программного обеспечения, а также основные технико-экономические показатели (пропускную способность и надежность интерфейса).

Электрическая совместимость — это согласованность статических и динамических параметров передаваемых электрических сигналов в системе шин, с учетом используемой логики и нагрузочной способности элементов.

Условия электрической совместимости определяют:

·     тип приемопередающих элементов;

·     соотношение между логическим и электрическим состояниями сигна­лов и пределы их изменения;

·     коэффициенты нагрузочной способности приемопередающих элементов;

·     схему согласования линии;

·     допускаемую длину линии и порядок подключения линий к разъемам;

·     требования к источникам и цепям электрического питания;

·     требования к помехоустойчивости и заземлению.

Условия конструктивной совместимости определяют:

·     типы соединительных элементов (разъем, штекер);

·     распределение сигналов интерфейса по контактам соединительных элементов;

·     типы конструкции платы, каркаса, стойки;

·     конструкции кабельного соединения.

Выполнение информационных электрических и конструктивных усло­вий интерфейса необходимо, но не достаточно для взаимного сопряжения устройств и обмена данными между ними. Эти устройства должны выпол­нять в определенной последовательности операции, связанные с обме­ном информации: распознавать адрес сообщения, подключаться к линиям интерфейса, передавать сообщение в интерфейс, принимать его из интер­фейса и др.

Интерфейсные функции отличаются от приборных, связанных непо­средственно с проведением измерения, т. е. с преобразованием данных, их накоплением, первичной обработкой, представлением и др.

Интерфейсные функции обеспечивают совместимость друг с другом различных приборов, не ограничивая работоспособность других приборов в системе. Функции, которые устройства выполняют чаще всего, называют­ся основными. К ним относятся:

·     выдача и прием информации (выполняются источниками и приемни­ками информации);

·     управление передачей данных (функция контроллера);

·     согласование источника информации (выполняется устройством-источником или контроллером);

·     согласование приемника информации (выполняется устройством-приемником или контроллером).

Функции контроллера может выполнять не только одно, но и несколь­ко устройств в системе.

Основные функции интерфейса, которые необходимо реализовать для обеспечения информационной совместимости, определяются функ­циональной организацией интерфейса. На канал управления возложены функции селекции информационного канала, синхронизации обмена ин­формацией, координации взаимодействия, а на информационный' канал возлагаются функции буферного хранения информации, преобразования формы представления информации и др.

Селекция, или арбитраж, информационного канала обеспечивает одно­значность выполнения процессов взаимодействия сопрягаемых элементов системы.

Анализ возможных вариантов реализации способов селекции уст­ройств на информационной магистрали позволяет выделить следующие операции селекции: инициирование запроса, выделение приоритетного запроса, идентификация запроса.

Инициирование запроса включает в себя процедуры выдачи, хране­ния и восприятия запроса на организацию процесса взаимодействия. Сиг­налы запроса могут храниться в регистре управляющего блока (радиаль­ная структура шины запроса) или на отдельных триггерах каждого интер­фейсного блока (магистральная структура шины запроса).

Функция выделения приоритетного запроса осуществляется на основе анализа сигналов занятости информационного канала, разрешения прио­ритетного прерывания, запроса источника сообщения и зависит от числа уровней приоритета.

Идентификация запроса заключается в определении адреса приори­тетного источника запроса. В машинных интерфейсах получаемая при запросе адресная информация называется вектором прерывания. Послед­ний обозначает начальный адрес программы обслуживания прерывания от данного устройства.

Функция синхронизации определяет временное согласование процес­сов взаимодействия между функциональными устройствами системы.

Функция координации определяет совокупность процедур по орга­низации и контролю процессов взаимодействия устройств системы. Ос­новными операциями координации являются настройка на взаимодей­ствие, контроль взаимодействия, передача функций управления (на­стройки) .

В момент обращения одного устройства к вызываемому последнее может находиться в состоянии взаимодействия или в нерабочем состоя­нии. Поэтому процессы взаимодействия элементов системы могут иметь два уровня конфликтных ситуаций при доступе: к информационному каналу интерфейса и к устройству системы. Таким образом, операция настройки включает процедуры опроса и анализа состояния вызывае­мого устройства, а также передачи команд и приема информации сос­тояния. Последовательность операций настройки может быть различной и зависит от сложности алгоритмов работы функциональных устройств системы. В большинстве случаев алгоритмы настройки дополняются про­граммным способом посредством передачи кодов команд и состояний по информационной шине.

Операции контроля направлены на обеспечение надежности функцио­нирования интерфейса и достоверности передаваемых данных. В процес­сах асинхронного взаимодействия возможно возникновение так называе­мых тупиковых ситуаций, приводящих к искажениям кодовых комби­наций передаваемых данных. Поэтому в операции контроля входят раз­решение тупиковых ситуаций асинхронного процесса взаимодействия и повышение достоверности передаваемых данных. Контроль тупиковых ситуаций взаимодействия основывается на измерении фиксированного интервала времени, в течение которого должно поступать ожидаемое асин­хронное событие. Если за контролируемый интервал времени событие не поступает, то фиксируется неисправность. Операция контроля тупико­вых ситуаций получила название "тайм-аут".

Контроль передаваемых данных основывается на использовании кодов, построенных на известных принципах избыточного кодирования инфор­мации (циклические коды, код Хеминга, контроль кодов на четность и др.).

В целях повышения надежности управления и эффективности исполь­зования составных элементов системы необходима передача функции координации между функциональными устройствами. Эта операция пере­дачи управления характерна для интерфейсов с децентрализованной струк­турой управления.

Повышение надежности достигается резервированием управления (при отключении питания или отказе интерфейсного модуля, выполняю­щего функции управления интерфейсом).

Повышение эффективности использования оборудования системы достигается исключением дублирования дорогостоящих устройств путем доступа к ним с разделением времени двух и более контроллеров и ЭВМ.

Информационный канал интерфейса предназначен для реализации функции обмена и преобразования информации.

Основными процедурами функции обмена является прием и выдача информации (данных, состояния, команд, адресов) регистрами состав­ных устройств системы. Основные процедуры функции преобразования следующие: преобразование последовательного кода в параллельный и наоборот; перекодирование информации; дешифрация команд, адресов; логические действия над содержимым регистра состояния.

Приборные интерфейсы

Проектирование ИИС выполняется на основе модульного принципа построения, что привело к необходимости разработки правил, регламен­тирующих основные требования к совместимости этих блоков. Данный принцип впервые был применен в области ядерно-химических измерений, где требуется сложная аппаратура с высокой степенью автоматизации и активным использованием ЭВМ для контроля, управления, сбора и пер­вичной обработки данных. Поэтому именно в этой области впервые про­ведена стандартизация на правила сопряжения блоков.

В США для модулей (блоков) ядерной электроники с транзистор­ными схемами в 1966 г. был принят стандарт NIM (Nuclear Instrument Module). В нем установлены механические и электрические требования к блокам. Этот стандарт впоследствии получил распространение в странах Западной Европы. Указанный стандарт позволил осуществить обмен дан­ными модульных блоков с ЭВМ. Следует отметить, что такие понятия, как канал передачи данных и интерфейс, процесс обмена данными и др., были перенесены из вычислительной в измерительную технику.

Реализация принципов программного управления работой ИИС при­вела к развитию приборных систем; разработки интерфейсов для них появились на рубеже 60 - 70-х годов. Приборные интерфейсы служат для компоновки различных комплексов из стандартных измерительных приборов, устройств ввода-вывода и управляющих устройств.

Пример, фирма "Philips" разработала систему сопряжения Partyline - System, предназначенную для объединения в ИИС до 15 приборов. С помощью стандартного кабеля приборы последовательно соединяются друг с дру­гом (в произвольном порядке) и с ЭВМ. Для этого в каждом приборе имеются два разъема, соединенные между собой одноименными контак­тами. Каждый прибор содержит специальное устройство согласования из­мерительного оборудования с интерфейсом.

Построение интерфейса осуществляется по магистральному принци­пу для передачи цифровых сигналов. Информация передается по шести шинам: адресной (4 линии), измерительной (5 линий), управления (4 линии), а также по шинам синхронизации, диагностики операций и пере­дачи команд печати (все по одной линии). Стандартный кабель содержит шесть соединительных линий. Каждому прибору (измерительному блоку) присваивается свой адрес, представленный четырьмя разрядами двоичного кода. Передача данных производится в параллельно-последовательном ви­де (в двоичном коде). Под действием управляющих сигналов выходная информация последовательно передается с декад на линии интерфейса (измерительную шину). По этим же линиям передается кодированная информация, а также полярность измеряемых величин, режим работы и др.

Принцип работы приборного интерфейса следующий. При появлении информации от источника к приемнику работа обоих приборов координи­руется сигналами по линиям шины синхронизации. При этом цикл переда­чи информации состоит из четырех фаз:

·     источник выставляет информационный байт;

·     источник выставляет сигналы на шине синхронизации;

·     приемник принимает информацию,

·     приемник подготавливается к приему нового байта информации.

Приборный интерфейс имеет следующие ограничения: число прибо­ров не более 15, максимальная допустимая длина кабеля связи — 20 м, максимальная скорость передачи по магистрали - 1 Мбайт/с.

Логические уровни сигналов выбраны из расчета применения интег­ральных схем ТТЛ (высокий уровень — не менее 2,4 В, низкий — не более 0,8 В). Нагрузкой каждой сигнальной линии является внутреннее сопро­тивление каждого прибора не более 3 кОм, подключенное к шине + 5 В, и резистор 6,2 кОм, подключенный к шине "земля" схемы. Кодирование информации, как следует из конструкции магистрали, ведется по байтам. Схемы интерфейса программно-управляемых приборов выполняют­ся в двух вариантах:

в виде схем, реализованных и конструктивно оформленных внутри прибора как его составная часть, с установкой стандартного разъема на задней панели прибора; этот вариант применяется преимущественно в новых приборах, выпускаемых по стандарту МЭК;

в виде отдельно выполненных интерфейсных модулей, подключаемых к серийно выпускаемым или находящимся в обращении цифровым при­борам и устройствам; эти модули по существу являются адаптерами, т. е. переходными устройствами между выходом прибора и стандартным входом в магистраль приборного интерфейса.

Приборный   интерфейс   широко   применяется   как   в   отечественной промышленности, так и зарубежными фирмами при построении ИИС для автоматизации эксперимента. Из имеющихся непрограммируемых приборов, не подготовленных для совместной работы, приборный интер­фейс позволяет создавать ИС путем использования относительно неслож­ных устройств сопряжения — интерфейсных плат и микроЭВМ в качестве контроллера системы.


Машинные интерфейсы

Машинные (или системные) интерфейсы предназначены для объеди­нения составных блоков ЭВМ в единую систему. Тенденция развития машинных интерфейсов вызвана необходимостью значительного увели­чения процента операций ввода-вывода, номенклатуры и числа перифе­рийных устройств. В связи с этим существенно возросли требова­ния к унификации и стандартизации интерфейсов.

Характерной особенностью машинных интерфейсов является необ­ходимость их функционирования в нескольких режимах взаимодействия, влияющих на функциональный состав систем шин. Основными режима­ми взаимодействия являются ввод-вывод по программному каналу и по каналу прямого доступа в память.


Заключение

Повышение производительности труда человека – это заслуга механизации. Уже долгое время она облегчает  задачи человека, но не может полностью освободить его от ручного труда или присутствия на рабочем месте. Такие вещи, как оценка результатов контроля и решения вопроса о дальнейшей судьбе проверенной детали  - забраковать ее или отправить на доработку, были только в компетенции человека, что требовало затрат умственного труда и относятся к сфере управления производством. Очевидно, эти функции тоже можно упразднить, заменив человека механизмами способными самостоятельно решать данные проблемы. Переложение функций управления процессом с человека на автоматические устройства стало началом нового времени – эры автоматизации.

Стремительное развитие электроники и вычислительной техники оказалось предпосылкой для широкой автоматизации самых разнообразных процессов в промышленности, в научных исследованиях, в быту. Вершиной автоматизации стало появление автоматизированных измерительных и диагностических комплексов, которые позволили полностью заменить человека, как важного элемента любого производственного или научно-исследовательского процесса. Опираясь на возможности таких систем и комплексов, человечество поднялось на еще одну ступень в бесконечном стремлении взойти на вершину технического совершенства.


Список литературы.

1.   Цапенко М. П. Измерительные информационные системы: Структуры и алгоритмы, системотехническое проектирование. -  М.: Энергоатомиздат, 1985

2.   Кузьмичев Д. А.,  Радкевич И. А., Смирнов А. Д. Автоматизация экспериментальных исследований. -  М.: Наука, 1983.

3.   Государственная система приборов и средств автоматизации / Под ред. Г. И. Кавалерова. -  М.: ЦНИИТЭИ приборостроения, средства автоматизации и систем управления,1981.

4.   Хазанов Б. И. Интерфейсы измерительных систем. -  М.: Энергия, 1979.

5.   Алиев Т. М., Тер-Хачатуров А.А. Измерительная техника: Учебное пособие для техн. вузов. -  М.: Высш. шк.,1991.


© 2012 Рефераты, курсовые и дипломные работы.