рефераты
Главная

Рефераты по рекламе

Рефераты по физике

Рефераты по философии

Рефераты по финансам

Рефераты по химии

Рефераты по хозяйственному праву

Рефераты по цифровым устройствам

Рефераты по экологическому праву

Рефераты по экономико-математическому моделированию

Рефераты по экономической географии

Рефераты по экономической теории

Рефераты по этике

Рефераты по юриспруденции

Рефераты по языковедению

Рефераты по юридическим наукам

Рефераты по истории

Рефераты по компьютерным наукам

Рефераты по медицинским наукам

Рефераты по финансовым наукам

Рефераты по управленческим наукам

Психология и педагогика

Промышленность производство

Биология и химия

Языкознание филология

Издательское дело и полиграфия

Рефераты по краеведению и этнографии

Рефераты по религии и мифологии

Рефераты по медицине

Рефераты по сексологии

Рефераты по информатике программированию

Краткое содержание произведений

Курсовая работа: Отрисовка сцены "Отражающиеся дорожки" алгоритмом обратной трассировки лучей

Курсовая работа: Отрисовка сцены "Отражающиеся дорожки" алгоритмом обратной трассировки лучей

Курсовая работа

на тему:

«Отрисовка сцены «Отражающиеся дорожки» алгоритмом обратной трассировки лучей»

Екатеринбург 2011 г.


Алгоритм работы программы

1)  Заранее в программе заданы объекты и источники света, тип поверхности объектов, размеры окна для отображения изображения, цвет фона, а также координаты точки обзора;

2)  Затем для каждого пикселя изображения рассчитываем цвет, для этого направляем лучи;

3)  Если заданный луч не пересекает ни одного объекта сцены, то закрашиваем данный пиксель в цвет фона.

4)  Если же заданный луч пересекает какой-либо объект сцены, то обращаемся к методу класса Ray рассчитывающему цвет в точке пересечения. Он в свою очередь обращается к аналогичному методу класса Sphere, который находит координаты точки пересечения луча с объектом, увеличивает длину луча (вектора) до точки пересечения с объектом, находит вектор нормали к поверхности в точке пересечения.

5)  Программа передает все найденные выше параметры в метод класса Surface, который рассчитывает цвет в данной точке. В зависимости от свойств материала пересеченного объекта данный метод находит затененность, отражение, преломление в данной точке. При наличии двух последних генерируется новый луч, который трассируется (т.е. проходит заново пункты 3–5 данного алгоритма (рекурсия)). При трассировке этого луча мы получаем цвет в данной точке, который модифицируется при помощи коэффициентов и возвращается в главную функцию для последующей отрисовки.


Блок-схема программы

программа трассировка тень освещение


Заключение

В результате работы над программой были выполнены поставленные требования: реализована трассировка лучей с просчетом теней, освещения, отражения, преломления лучей, что является несомненным достоинством программы. Также задан объект – сфера. Недостатком программы считаю то, что не рассмотрены такие источники света, как свет окружающей среды и направленный свет.


Приложение 1

Полученное изображение


Приложение 2

Листинг Light.java

package objects;

/**

*

* @author Алексей

*/

 // Источник света

public class Light {

public WorkVector lightvec; // позиция истоника света

public float lightred, lightgreen, lightblue; // цвет источника света

public Light (WorkVector v, float r, float g, float b) {

lightvec = v;

lightred = r;

lightgreen = g;

lightblue = b;

}

}


Приложение 3

Листинг Ray.java

package objects;

import java.awt. Color;

import java.util. Vector;

/**

*

* @author Алексей

*/

 // Луч

public class Ray {

float max_distance = Float.MAX_VALUE; // максимальная значение для currentDistance луча

WorkVector initRay; // начало луча

WorkVector finalRay; // направление луча

float currentDistance; // Текущее расстояние до обьекта

Sphere object; // Обьект, с которым произошло столкновение луча

public Ray (WorkVector eye, WorkVector dir) {

initRay = new WorkVector(eye);

finalRay = WorkVector.normalize(dir);

}

public boolean trace (Vector objects) {

currentDistance = max_distance;

object = null;

for (int i = 0; i < objects.size(); i++) {

Sphere object = (Sphere) objects.elementAt(i);

object.intersection(this); // проверка пересечения с объектом

}

return (object!= null); // возвращение true если было пересечение

}

public final Color Shade (Vector lights, Vector objects, Color bgnd) {

return object. Shade (this, lights, objects, bgnd);

}

}


Приложение 4

Листинг Sphere.java

package objects;

import java.awt. Color;

import java.util. Vector;

/**

*

* @author Алексей

*/

 // Сфера

public class Sphere {

Surface surface; // тип поверхности

WorkVector center; // положение сферы

float radius; // радиус сферы

public Sphere (Surface s, WorkVector c, float r) {

surface = s;

center = c;

radius = r;

}

public boolean intersection (Ray ray)

public Color Shade (Ray ray, Vector lights, Vector objects, Color bgnd) {

 // вызывается, если была найдена точка пересечения обьекта и луча

 // направление луча увеличивается на расстояние до точки пересечения

float px = ray.initRay.x + ray.currentDistance*ray.finalRay.x;

float py = ray.initRay.y + ray.currentDistance*ray.finalRay.y;

float pz = ray.initRay.z + ray.currentDistance*ray.finalRay.z;

WorkVector p = new WorkVector (px, py, pz); // нахождение точки пересечения луча и обьекта

WorkVector v = new WorkVector (-ray.finalRay.x, – ray.finalRay.y, – ray.finalRay.z); // нахождение вектора – отрицательного направления луча

WorkVector n = new WorkVector((px – center.x), (py – center.y), (pz – center.z)); // находится вектор, которому принадлежит нормаль в текущей точке поверхности

n.normalize(); // получаем нормаль

return surface. Shade (p, n, v, lights, objects, bgnd); // возвращяестя цвет в данной точке

}

}


Приложение 5

Листинг Surface.java

package objects;

import java.awt. Color;

import java.util. Vector;

/**

*

* @author Алексей

*/

public class Surface {

public float ir, ig, ib; // цвет обьекта

public float kRasseivania, kOtragenia, ns; // константы для освещения обьекта

public float kt, kr; // коэффициенты материала

private float TINY = 0.001f;

private float I255 = 0.00392156f;

private WorkVector luch;

public Surface (float rval, float gval, float bval, float d,

float s, float n, float r, float t) {

ir = rval; ig = gval; ib = bval; // задание цвета поверхности

kRasseivania = d; // рассеивающая составляющая поверхности

kOtragenia = s; // отражающая составляющая поверхности

ns = n;

kr = r*I255;

kt = t*I255;

}

public Color Shade (WorkVector p, WorkVector n, WorkVector v, Vector lights, Vector objects, Color bgnd) // возвращает полученный цвет обьекта в точке

 // точка пересечения (p)

 // нормаль в точке пересечения (n)

 // вектор направленный в точку из которой пришел лучь (v)

{

float r = 0; // обнуляем

float g = 0;

float b = 0;

for (int i = 0; i < lights.size(); i++) { // цикл, в котором расчитывается освещенность

Light light = (Light) lights.elementAt(i); // взятие текущего истчоника освещения

luch = new WorkVector (light.lightvec.sub(p)); // задаем вектор luch как вектор от источника освещения до точки обьекта

luch.normalize(); // нормализируем вектор luch чтобы получить вектор направления от источника освещения к точке обьекта

 // ЗАТЕНЕННОСТЬ

WorkVector poffset = p.add (luch.mul(TINY)); // к основанию нового луча добавляется очень мальенький вектор luch чтобы при проверке не пересечь сам себя

Ray shadowRay = new Ray (poffset, luch); // создание луча проверки на затененность

if (shadowRay.trace(objects)) // в случае пеоесечения какого либо обьекта

continue; // переходим к следующему источнику освещения

float lambert = WorkVector.dot (n, luch); // нахождение коэффициента освещенности в зависимости от нормали обьекта в данной точке и напраления источника света

if (lambert > 0) {

if (kRasseivania > 0) {

float diffuse = kRasseivania*lambert;

r += diffuse*ir*light.lightred;

g += diffuse*ig*light.lightgreen;

b += diffuse*ib*light.lightblue;

}

if (kOtragenia > 0) {

lambert *= 2;

float spec = v.dot (lambert*n.x – luch.x, lambert*n.y – luch.y, lambert*n.z – luch.z);

if (spec > 0) {

spec = kOtragenia*((float) Math.pow((double) spec, (double) ns));

r += spec*light.lightred;

g += spec*light.lightgreen;

b += spec*light.lightblue;

}

}

}

}

 // ОТРАЖЕНИЕ

if (kr > 0) { // если коэффициент отражения больше нуля, то обьект может отражать

float t = v.dot(n); // получение результата скалярного произведения вектора направленного к началу источника луча и нормали поверхности в данной точке

if (t > 0) {

t *= 2;

WorkVector reflect = new WorkVector (n.mul(t).sub(v));

WorkVector poffset = new WorkVector (p.add (reflect.mul(TINY)));

Ray reflectedRay = new Ray (poffset, reflect);

if (reflectedRay.trace(objects)) {

Color rcolor = reflectedRay. Shade (lights, objects, bgnd);

r += kr*rcolor.getRed();

g += kr*rcolor.getGreen();

b += kr*rcolor.getBlue();

} else {

r += kr*bgnd.getRed();

g += kr*bgnd.getGreen();

b += kr*bgnd.getBlue();

}

}

}

 // ПРИЛОМЛЕНИЕ

if (kt > 0) {

WorkVector tr;

WorkVector incident = v.add(p);

float eta = (float) 0.7;

float c1 = incident.mul(-1).dot(n);

float c2;

c2 = 1 – eta*eta*(1-c1*c1);

if (c2 > 0.0) {

c2 = (float) (Math.sqrt(c2));

float maae = (eta*c1 – c2);

tr = incident.mul(eta).add (n.mul(maae));

tr.normalize();

WorkVector poffset = p.add (n.mul(-TINY));

Ray reflectedRay = new Ray (poffset, tr);

if (reflectedRay.trace(objects)) {

Color rcolor = reflectedRay. Shade (lights, objects, bgnd);

r += kt*rcolor.getRed();

g += kt*rcolor.getGreen();

b += kt*rcolor.getBlue();

} else {

r += kt*bgnd.getRed();

g += kt*bgnd.getGreen();

b += kt*bgnd.getBlue();

}

}

}

 // чтобы избежать выход за границы

r = (r > 1f)? 1f: r;

r = (r < 0f)? 0f: r;

g = (g > 1f)? 1f: g;

g = (g < 0f)? 0f: g;

b = (b > 1f)? 1f: b;

b = (b < 0f)? 0f: b;

return new Color (r, g, b); // возвращение цвета точки

}

}


Приложение 6

Листинг WorkVector.java

package objects;

/**

*

* @author Алексей

*/

public class WorkVector {

public float x, y, z; // координаты вектора

public WorkVector() {}

public WorkVector (float X, float Y, float Z) {

x = X;

y = Y;

z = Z;

}

public WorkVector (WorkVector v) {

x = v.x;

y = v.y;

z = v.z;

}

 // методы

public float dot (WorkVector v) { // скалярное произведение

return (x*v.x + y*v.y + z*v.z);

}

public float dot (float Bx, float By, float Bz) {

return (x*Bx + y*By + z*Bz);

}

public static float dot (WorkVector A, WorkVector B) {

return (A.x*B.x + A.y*B.y + A.z*B.z);

}

public WorkVector add (WorkVector A) { // Вектор сложения

return new WorkVector (x+A.x, y+A.y, z+A.z);

}

public WorkVector sub (WorkVector A) { // Вектор разности

return new WorkVector (x-A.x, y-A.y, z-A.z);

}

public WorkVector mul (float A) { // Вектор, умноженный на число

return new WorkVector (x*A, y*A, z*A);

}

public WorkVector set (WorkVector A) { // Задание координат

return new WorkVector (A.x, A.y, A.z);

}

public WorkVector set (float Ax, float Ay, float Az) {

return new WorkVector (Ax, Ay, Az);

}

public WorkVector cross (WorkVector B) {

return new WorkVector (y*B.z – z*B.y, z*B.x – x*B.z, x*B.y – y*B.x);

}

public WorkVector cross (float Bx, float By, float Bz) {

return new WorkVector (y*Bz – z*By, z*Bx – x*Bz, x*By – y*Bx);

}

public WorkVector cross (WorkVector A, WorkVector B) {

return new WorkVector (A.y*B.z – A.z*B.y, A.z*B.x – A.x*B.z, A.x*B.y – A.y*B.x);

}

public float length() { // Нахождение длины вектора

return (float) Math.sqrt (x*x + y*y + z*z);

}

public float length (WorkVector A) {

return (float) Math.sqrt (A.x*A.x + A.y*A.y + A.z*A.z);

}

public void normalize() { // нормализация вектора

float t = x*x + y*y + z*z;

if (t!= 0 && t!= 1) t = (float) (1 / Math.sqrt(t));

x *= t;

y *= t;

z *= t;

}

public static WorkVector normalize (WorkVector A) {

float t = A.x*A.x + A.y*A.y + A.z*A.z;

if (t!= 0 && t!= 1) t = (float) (1 / Math.sqrt(t));

return new WorkVector (A.x*t, A.y*t, A.z*t);

}

}


Приложение 7

Листинг Main.java

package ray_tracing;

import objects.*;

import java.awt. Color;

import java.awt. Frame;

import java.awt. Graphics;

import java.awt. Image;

import java.awt.event. WindowAdapter;

import java.awt.event. WindowEvent;

import java.util. Vector;

/**

*

* @author Алексей

*/

public class Main {

final static int kol_vo = 600;

static Image screen;

static Graphics gc;

static Vector listOfObjects;

static Vector listOfLights;

static Surface currentSurface;

static WorkVector eye, lookat, up; // векторы необходимые для задания проекции

static float angle = 40; // угол обзора

static Color background = new Color (0,0,0); // цвет фона

static int width=640, height=480;

static Frame frame = new Frame («Raytracing»); // создание фрейма для отображения

public static void main (String[] args) {

frame.setSize (width, height);

frame.setLocationRelativeTo(null);

frame.setVisible(true);

screen = frame.createImage (width, height);

gc = screen.getGraphics();

gc.setColor (frame.getBackground());

gc.fillRect (0, 0, width, height);

frame.addWindowListener (new WindowAdapter() {

@Override

public void windowClosing (WindowEvent e) {

System.exit(0);

}

});

 // задание списков обьектов и источников освещения

listOfObjects = new Vector (kol_vo, kol_vo);

listOfLights = new Vector (kol_vo, kol_vo);

 // добавление источника освещения

listOfLights.addElement (new Light (new WorkVector((float) 2, (float) 2, (float) 1), 1, 1, 1));

listOfLights.addElement (new Light (new WorkVector((float) – 3, (float) 5, (float) 3), 1, 1, 1));

 // добавления сфер на сцену

for (int i=0; i<40; i++)

for (int j=0; j<10; j++)

{

 // Задание материала для обьектов

currentSurface = new Surface (i*j*0.02f, 0.7f, i*j*0.01f, 0.4f, 0.4f, 10.0f, 0f, 0f);

 // Добавление обьекта

listOfObjects.addElement (new Sphere (currentSurface, new WorkVector((float) i*(float) 1.0–9, (float) – 5*(float) Math.sqrt((float) i)+7, (float) – j*j*(float) 1.00+(float) 6), (float) 0.8));

}

currentSurface = new Surface (0.6f, 0.6f, 0.4f, 0.2f, 0.4f, 10.0f, 1.0f, 0.2f);

listOfObjects.addElement (new Sphere (currentSurface, new WorkVector((float) 20, (float) 0, (float) – 40), (float) 15));

 // Задание необходимых переменных для рендера

eye = new WorkVector (5, 0, 40); // координаты точки обзора

lookat = new WorkVector (0, 0, 0); // координаты точки направления взгляда

up = new WorkVector (0, 1, 0); // вектор указывающий верх

Graphics g = frame.getGraphics();

WorkVector Eye, Du, Dv, Vp;

WorkVector look = new WorkVector (lookat.x – eye.x, lookat.y – eye.y, lookat.z – eye.z);

float fl = (float) (width / (2*Math.tan((0.5*angle)*Math.PI/180)));

Eye = eye;

Du = WorkVector.normalize (look.cross(up)); // вектор являющийся вспомогательным вектором для рендера «по оси х»

Dv = WorkVector.normalize (look.cross(Du)); // вектор являющийся вспомогательным вектором для рендера «по оси y»

Vp = WorkVector.normalize(look); // вектор являющийся вспомогательным вектором для рендера «по оси z»

Vp = (Vp.mul(fl)).sub((((Du.mul(width)).add (Dv.mul(height))).mul (0.5f)));

for (int j = 0; j < height; j++) {

for (int i = 0; i < width; i++) {

WorkVector dir = new WorkVector(((Du.mul(i)).add (Dv.mul(j)).add(Vp))); // задание точки начала луча

Ray ray = new Ray (Eye, dir); // задание вектора направления луча

if (ray.trace(listOfObjects)) { // если было найдено пересечение с обектом

gc.setColor (ray. Shade (listOfLights, listOfObjects, background)); // то точка получает расчитываемый цвет

} else {

gc.setColor(background); // Если не было пересечения с обьектами то точка имеет цвет фона

}

gc.drawLine (i, j, i, j); // рисование точки на буферном изображении

}

}

g.drawImage (screen, 0, 0, frame); // отрисовка всего изображения на экране

}

}


© 2012 Рефераты, курсовые и дипломные работы.