Главная Рефераты по рекламе Рефераты по физике Рефераты по философии Рефераты по финансам Рефераты по химии Рефераты по хозяйственному праву Рефераты по цифровым устройствам Рефераты по экологическому праву Рефераты по экономико-математическому моделированию Рефераты по экономической географии Рефераты по экономической теории Рефераты по этике Рефераты по юриспруденции Рефераты по языковедению Рефераты по юридическим наукам Рефераты по истории Рефераты по компьютерным наукам Рефераты по медицинским наукам Рефераты по финансовым наукам Рефераты по управленческим наукам Психология и педагогика Промышленность производство Биология и химия Языкознание филология Издательское дело и полиграфия Рефераты по краеведению и этнографии Рефераты по религии и мифологии Рефераты по медицине Рефераты по сексологии Рефераты по информатике программированию Краткое содержание произведений |
Реферат: Сумма делителей числаРеферат: Сумма делителей числаДля начало приведём экспериментальный материал (который был получен с помощью программы Derive (по формуле 1.(см.ниже)): для нахождения делителей числа «a», программа делила число «a» на другие числа не превосходящие само число и если остаток от деления был равен 0, то число записывалось как делитель «a». ): Ниже приведены все делители чисел от 1 до 1000: [1, [1]] [2, [1, 2]] [3, [1, 3]] [4, [1, 2, 4]] [5, [1, 5]] [6, [1, 2, 3, 6]] [7, [1, 7]] [8, [1, 2, 4, 8]] [9, [1, 3, 9]] [10, [1, 2, 5, 10]] [11, [1, 11]] [12, [1, 2, 3, 4, 6, 12]] [13, [1, 13]] [14, [1, 2, 7, 14]] [15, [1, 3, 5, 15]] [16, [1, 2, 4, 8, 16]] [17, [1, 17]] [18, [1, 2, 3, 6, 9, 18]] [19, [1, 19]] [20, [1, 2, 4, 5, 10, 20]] [21, [1, 3, 7, 21]] [22, [1, 2, 11, 22]] [23, [1, 23]] [24, [1, 2, 3, 4, 6, 8, 12, 24]] [25, [1, 5, 25]] [26, [1, 2, 13, 26]] [27, [1, 3, 9, 27]] [28, [1, 2, 4, 7, 14, 28]] [29, [1, 29]] [30, [1, 2, 3, 5, 6, 10, 15, 30]] [31, [1, 31]] [32, [1, 2, 4, 8, 16, 32]] [33, [1, 3, 11, 33]] [34, [1, 2, 17, 34]] [35, [1, 5, 7, 35]] [36, [1, 2, 3, 4, 6, 9, 12, 18, 36]] [37, [1, 37]] [38, [1, 2, 19, 38]] [39, [1, 3, 13, 39]] [40, [1, 2, 4, 5, 8, 10, 20, 40]] [41, [1, 41]] [42, [1, 2, 3, 6, 7, 14, 21, 42]] [43, [1, 43]] [44, [1, 2, 4, 11, 22, 44]] [45, [1, 3, 5, 9, 15, 45]] [46, [1, 2, 23, 46]] [47, [1, 47]] [48, [1, 2, 3, 4, 6, 8, 12, 16, 24, 48]] [49, [1, 7, 49]] [50, [1, 2, 5, 10, 25, 50]] [51, [1, 3, 17, 51]] [52, [1, 2, 4, 13, 26, 52]] [53, [1, 53]] [54, [1, 2, 3, 6, 9, 18, 27, 54]] [55, [1, 5, 11, 55]] [56, [1, 2, 4, 7, 8, 14, 28, 56]] [57, [1, 3, 19, 57]] [58, [1, 2, 29, 58]] [59, [1, 59]] [60, [1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60]] [61, [1, 61]] [62, [1, 2, 31, 62]] [63, [1, 3, 7, 9, 21, 63]] [64, [1, 2, 4, 8, 16, 32, 64]] [65, [1, 5, 13, 65]] [66, [1, 2, 3, 6, 11, 22, 33, 66]] [67, [1, 67]] [68, [1, 2, 4, 17, 34, 68]] [69, [1, 3, 23, 69]] [70, [1, 2, 5, 7, 10, 14, 35, 70]] [71, [1, 71]] [72, [1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72]] [73, [1, 73]] [74, [1, 2, 37, 74]] [75, [1, 3, 5, 15, 25, 75]] [76, [1, 2, 4, 19, 38, 76]] [77, [1, 7, 11, 77]] [78, [1, 2, 3, 6, 13, 26, 39, 78]] [79, [1, 79]] [80, [1, 2, 4, 5, 8, 10, 16, 20, 40, 80]] [81, [1, 3, 9, 27, 81]] [82, [1, 2, 41, 82]] [83, [1, 83]] [84, [1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42, 84]] [85, [1, 5, 17, 85]] [86, [1, 2, 43, 86]] [87, [1, 3, 29, 87]] [88, [1, 2, 4, 8, 11, 22, 44, 88]] [89, [1, 89]] [90, [1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90]] [91, [1, 7, 13, 91]] [92, [1, 2, 4, 23, 46, 92]] [93, [1, 3, 31, 93]] [94, [1, 2, 47, 94]] [95, [1, 5, 19, 95]] [96, [1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 96]] [97, [1, 97]] [98, [1, 2, 7, 14, 49, 98]] [99, [1, 3, 9, 11, 33, 99]] [100, [1, 2, 4, 5, 10, 20, 25, 50, 100]] [101, [1, 101]] [102, [1, 2, 3, 6, 17, 34, 51, 102]] [103, [1, 103]] [104, [1, 2, 4, 8, 13, 26, 52, 104]] [105, [1, 3, 5, 7, 15, 21, 35, 105]] [106, [1, 2, 53, 106]] [107, [1, 107]] [108, [1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, 108]] [109, [1, 109]] [110, [1, 2, 5, 10, 11, 22, 55, 110]] [111, [1, 3, 37, 111]] [112, [1, 2, 4, 7, 8, 14, 16, 28, 56, 112]] [113, [1, 113]] [114, [1, 2, 3, 6, 19, 38, 57, 114]] [115, [1, 5, 23, 115]] [116, [1, 2, 4, 29, 58, 116]] [117, [1, 3, 9, 13, 39, 117]] [118, [1, 2, 59, 118]] [119, [1, 7, 17, 119]] [120, [1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120]] [121, [1, 11, 121]] [122, [1, 2, 61, 122]] [123, [1, 3, 41, 123]] [124, [1, 2, 4, 31, 62, 124]] [125, [1, 5, 25, 125]] [126, [1, 2, 3, 6, 7, 9, 14, 18, 21, 42, 63, 126]] [127, [1, 127]] [128, [1, 2, 4, 8, 16, 32, 64, 128]] [129, [1, 3, 43, 129]] [130, [1, 2, 5, 10, 13, 26, 65, 130]] [131, [1, 131]] [132, [1, 2, 3, 4, 6, 11, 12, 22, 33, 44, 66, 132]] [133, [1, 7, 19, 133]] [134, [1, 2, 67, 134]] [135, [1, 3, 5, 9, 15, 27, 45, 135]] [136, [1, 2, 4, 8, 17, 34, 68, 136]] [137, [1, 137]] [138, [1, 2, 3, 6, 23, 46, 69, 138]] [139, [1, 139]] [140, [1, 2, 4, 5, 7, 10, 14, 20, 28, 35, 70, 140]] [141, [1, 3, 47, 141]] [142, [1, 2, 71, 142]] [143, [1, 11, 13, 143]] [144, [1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72, 144]] [145, [1, 5, 29, 145]] [146, [1, 2, 73, 146]] [147, [1, 3, 7, 21, 49, 147]] [148, [1, 2, 4, 37, 74, 148]] [149, [1, 149]] [150, [1, 2, 3, 5, 6, 10, 15, 25, 30, 50, 75, 150]] [151, [1, 151]] [152, [1, 2, 4, 8, 19, 38, 76, 152]] [153, [1, 3, 9, 17, 51, 153]] [154, [1, 2, 7, 11, 14, 22, 77, 154]] [155, [1, 5, 31, 155]] [156, [1, 2, 3, 4, 6, 12, 13, 26, 39, 52, 78, 156]] [157, [1, 157]] [158, [1, 2, 79, 158]] [159, [1, 3, 53, 159]] [160, [1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 80, 160]] [161, [1, 7, 23, 161]] [162, [1, 2, 3, 6, 9, 18, 27, 54, 81, 162]] [163, [1, 163]] [164, [1, 2, 4, 41, 82, 164]] [165, [1, 3, 5, 11, 15, 33, 55, 165]] [166, [1, 2, 83, 166]] [167, [1, 167]] [168, [1, 2, 3, 4, 6, 7, 8, 12, 14, 21, 24, 28, 42, 56, 84, 168]] [169, [1, 13, 169]] [170, [1, 2, 5, 10, 17, 34, 85, 170]] [171, [1, 3, 9, 19, 57, 171]] [172, [1, 2, 4, 43, 86, 172]] [173, [1, 173]] [174, [1, 2, 3, 6, 29, 58, 87, 174]] [175, [1, 5, 7, 25, 35, 175]] [176, [1, 2, 4, 8, 11, 16, 22, 44, 88, 176]] [177, [1, 3, 59, 177]] [178, [1, 2, 89, 178]] [179, [1, 179]] [180, [1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 30, 36, 45, 60, 90, 180]] [181, [1, 181]] [182, [1, 2, 7, 13, 14, 26, 91, 182]] [183, [1, 3, 61, 183]] [184, [1, 2, 4, 8, 23, 46, 92, 184]] [185, [1, 5, 37, 185]] [186, [1, 2, 3, 6, 31, 62, 93, 186]] [187, [1, 11, 17, 187]] [188, [1, 2, 4, 47, 94, 188]] [189, [1, 3, 7, 9, 21, 27, 63, 189]] [190, [1, 2, 5, 10, 19, 38, 95, 190]] [191, [1, 191]] [192, [1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 192]] [193, [1, 193]] [194, [1, 2, 97, 194]] [195, [1, 3, 5, 13, 15, 39, 65, 195]] [196, [1, 2, 4, 7, 14, 28, 49, 98, 196]] [197, [1, 197]] [198, [1, 2, 3, 6, 9, 11, 18, 22, 33, 66, 99, 198]] [199, [1, 199]] [200, [1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 200]] [201, [1, 3, 67, 201]] [202, [1, 2, 101, 202]] [203, [1, 7, 29, 203]] [204, [1, 2, 3, 4, 6, 12, 17, 34, 51, 68, 102, 204]] [205, [1, 5, 41, 205]] [206, [1, 2, 103, 206]] [207, [1, 3, 9, 23, 69, 207]] [208, [1, 2, 4, 8, 13, 16, 26, 52, 104, 208]] [209, [1, 11, 19, 209]] [210, [1, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105, 210]] [211, [1, 211]] [212, [1, 2, 4, 53, 106, 212]] [213, [1, 3, 71, 213]] [214, [1, 2, 107, 214]] [215, [1, 5, 43, 215]] [216, [1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 27, 36, 54, 72, 108, 216]] [217, [1, 7, 31, 217]] [218, [1, 2, 109, 218]] [219, [1, 3, 73, 219]] [220, [1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110, 220]] [221, [1, 13, 17, 221]] [222, [1, 2, 3, 6, 37, 74, 111, 222]] [223, [1, 223]] [224, [1, 2, 4, 7, 8, 14, 16, 28, 32, 56, 112, 224]] [225, [1, 3, 5, 9, 15, 25, 45, 75, 225]] [226, [1, 2, 113, 226]] [227, [1, 227]] [228, [1, 2, 3, 4, 6, 12, 19, 38, 57, 76, 114, 228]] [229, [1, 229]] [230, [1, 2, 5, 10, 23, 46, 115, 230]] [231, [1, 3, 7, 11, 21, 33, 77, 231]] [232, [1, 2, 4, 8, 29, 58, 116, 232]] [233, [1, 233]] [234, [1, 2, 3, 6, 9, 13, 18, 26, 39, 78, 117, 234]] [235, [1, 5, 47, 235]] [236, [1, 2, 4, 59, 118, 236]] [237, [1, 3, 79, 237]] [238, [1, 2, 7, 14, 17, 34, 119, 238]] [239, [1, 239]] [240, [1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 40, 48, 60, 80, 120, 240]] [241, [1, 241]] [242, [1, 2, 11, 22, 121, 242]] [243, [1, 3, 9, 27, 81, 243]] [244, [1, 2, 4, 61, 122, 244]] [245, [1, 5, 7, 35, 49, 245]] [246, [1, 2, 3, 6, 41, 82, 123, 246]] [247, [1, 13, 19, 247]] [248, [1, 2, 4, 8, 31, 62, 124, 248]] [249, [1, 3, 83, 249]] [250, [1, 2, 5, 10, 25, 50, 125, 250]] [251, [1, 251]] [252, [1, 2, 3, 4, 6, 7, 9, 12, 14, 18, 21, 28, 36, 42, 63, 84, 126, 252]] [253, [1, 11, 23, 253]] [254, [1, 2, 127, 254]] [255, [1, 3, 5, 15, 17, 51, 85, 255]] [256, [1, 2, 4, 8, 16, 32, 64, 128, 256]] [257, [1, 257]] [258, [1, 2, 3, 6, 43, 86, 129, 258]] [259, [1, 7, 37, 259]] [260, [1, 2, 4, 5, 10, 13, 20, 26, 52, 65, 130, 260]] [261, [1, 3, 9, 29, 87, 261]] [262, [1, 2, 131, 262]] [263, [1, 263]] [264, [1, 2, 3, 4, 6, 8, 11, 12, 22, 24, 33, 44, 66, 88, 132, 264]] [265, [1, 5, 53, 265]] [266, [1, 2, 7, 14, 19, 38, 133, 266]] [267, [1, 3, 89, 267]] [268, [1, 2, 4, 67, 134, 268]] [269, [1, 269]] [270, [1, 2, 3, 5, 6, 9, 10, 15, 18, 27, 30, 45, 54, 90, 135, 270]] [271, [1, 271]] [272, [1, 2, 4, 8, 16, 17, 34, 68, 136, 272]] [273, [1, 3, 7, 13, 21, 39, 91, 273]] [274, [1, 2, 137, 274]] [275, [1, 5, 11, 25, 55, 275]] [276, [1, 2, 3, 4, 6, 12, 23, 46, 69, 92, 138, 276]] [277, [1, 277]] [278, [1, 2, 139, 278]] [279, [1, 3, 9, 31, 93, 279]] [280, [1, 2, 4, 5, 7, 8, 10, 14, 20, 28, 35, 40, 56, 70, 140, 280]] [281, [1, 281]] [282, [1, 2, 3, 6, 47, 94, 141, 282]] [283, [1, 283]] [284, [1, 2, 4, 71, 142, 284]] [285, [1, 3, 5, 15, 19, 57, 95, 285]] [286, [1, 2, 11, 13, 22, 26, 143, 286]] [287, [1, 7, 41, 287]] [288, [1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 32, 36, 48, 72, 96, 144, 288]] [289, [1, 17, 289]] [290, [1, 2, 5, 10, 29, 58, 145, 290]] [291, [1, 3, 97, 291]] [292, [1, 2, 4, 73, 146, 292]] [293, [1, 293]] [294, [1, 2, 3, 6, 7, 14, 21, 42, 49, 98, 147, 294]] [295, [1, 5, 59, 295]] [296, [1, 2, 4, 8, 37, 74, 148, 296]] [297, [1, 3, 9, 11, 27, 33, 99, 297]] [298, [1, 2, 149, 298]] [299, [1, 13, 23, 299]] [300, [1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 25, 30, 50, 60, 75, 100, 150, 300]] [301, [1, 7, 43, 301]] [302, [1, 2, 151, 302]] [303, [1, 3, 101, 303]] [304, [1, 2, 4, 8, 16, 19, 38, 76, 152, 304]] [305, [1, 5, 61, 305]] [306, [1, 2, 3, 6, 9, 17, 18, 34, 51, 102, 153, 306]] [307, [1, 307]] [308, [1, 2, 4, 7, 11, 14, 22, 28, 44, 77, 154, 308]] [309, [1, 3, 103, 309]] [310, [1, 2, 5, 10, 31, 62, 155, 310]] [311, [1, 311]] [312, [1, 2, 3, 4, 6, 8, 12, 13, 24, 26, 39, 52, 78, 104, 156, 312]] [313, [1, 313]] [314, [1, 2, 157, 314]] [315, [1, 3, 5, 7, 9, 15, 21, 35, 45, 63, 105, 315]] [316, [1, 2, 4, 79, 158, 316]] [317, [1, 317]] [318, [1, 2, 3, 6, 53, 106, 159, 318]] [319, [1, 11, 29, 319]] [320, [1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 64, 80, 160, 320]] [321, [1, 3, 107, 321]] [322, [1, 2, 7, 14, 23, 46, 161, 322]] [323, [1, 17, 19, 323]] [324, [1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, 81, 108, 162, 324]] [325, [1, 5, 13, 25, 65, 325]] [326, [1, 2, 163, 326]] [327, [1, 3, 109, 327]] [328, [1, 2, 4, 8, 41, 82, 164, 328]] [329, [1, 7, 47, 329]] [330, [1, 2, 3, 5, 6, 10, 11, 15, 22, 30, 33, 55, 66, 110, 165, 330]] [331, [1, 331]] [332, [1, 2, 4, 83, 166, 332]] [333, [1, 3, 9, 37, 111, 333]] [334, [1, 2, 167, 334]] [335, [1, 5, 67, 335]] [336, [1, 2, 3, 4, 6, 7, 8, 12, 14, 16, 21, 24, 28, 42, 48, 56, 84, 112, 168, 336]] [337, [1, 337]] [338, [1, 2, 13, 26, 169, 338]] [339, [1, 3, 113, 339]] [340, [1, 2, 4, 5, 10, 17, 20, 34, 68, 85, 170, 340]] [341, [1, 11, 31, 341]] [342, [1, 2, 3, 6, 9, 18, 19, 38, 57, 114, 171, 342]] [343, [1, 7, 49, 343]] [344, [1, 2, 4, 8, 43, 86, 172, 344]] [345, [1, 3, 5, 15, 23, 69, 115, 345]] [346, [1, 2, 173, 346]] [347, [1, 347]] [348, [1, 2, 3, 4, 6, 12, 29, 58, 87, 116, 174, 348]] [349, [1, 349]] [350, [1, 2, 5, 7, 10, 14, 25, 35, 50, 70, 175, 350]] [351, [1, 3, 9, 13, 27, 39, 117, 351]] [352, [1, 2, 4, 8, 11, 16, 22, 32, 44, 88, 176, 352]] [353, [1, 353]] [354, [1, 2, 3, 6, 59, 118, 177, 354]] [355, [1, 5, 71, 355]] [356, [1, 2, 4, 89, 178, 356]] [357, [1, 3, 7, 17, 21, 51, 119, 357]] [358, [1, 2, 179, 358]] [359, [1, 359]] [360, [1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120, 180, 360]] [361, [1, 19, 361]] [362, [1, 2, 181, 362]] [363, [1, 3, 11, 33, 121, 363]] [364, [1, 2, 4, 7, 13, 14, 26, 28, 52, 91, 182, 364]] [365, [1, 5, 73, 365]] [366, [1, 2, 3, 6, 61, 122, 183, 366]] [367, [1, 367]] [368, [1, 2, 4, 8, 16, 23, 46, 92, 184, 368]] [369, [1, 3, 9, 41, 123, 369]] [370, [1, 2, 5, 10, 37, 74, 185, 370]] [371, [1, 7, 53, 371]] [372, [1, 2, 3, 4, 6, 12, 31, 62, 93, 124, 186, 372]] [373, [1, 373]] [374, [1, 2, 11, 17, 22, 34, 187, 374]] [375, [1, 3, 5, 15, 25, 75, 125, 375]] [376, [1, 2, 4, 8, 47, 94, 188, 376]] [377, [1, 13, 29, 377]] [378, [1, 2, 3, 6, 7, 9, 14, 18, 21, 27, 42, 54, 63, 126, 189, 378]] [379, [1, 379]] [380, [1, 2, 4, 5, 10, 19, 20, 38, 76, 95, 190, 380]] [381, [1, 3, 127, 381]] [382, [1, 2, 191, 382]] [383, [1, 383]] [384, [1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 384]] [385, [1, 5, 7, 11, 35, 55, 77, 385]] [386, [1, 2, 193, 386]] [387, [1, 3, 9, 43, 129, 387]] [388, [1, 2, 4, 97, 194, 388]] [389, [1, 389]] [390, [1, 2, 3, 5, 6, 10, 13, 15, 26, 30, 39, 65, 78, 130, 195, 390]] [391, [1, 17, 23, 391]] [392, [1, 2, 4, 7, 8, 14, 28, 49, 56, 98, 196, 392]] [393, [1, 3, 131, 393]] [394, [1, 2, 197, 394]] [395, [1, 5, 79, 395]] [396, [1, 2, 3, 4, 6, 9, 11, 12, 18, 22, 33, 36, 44, 66, 99, 132, 198, 396]] [397, [1, 397]] [398, [1, 2, 199, 398]] [399, [1, 3, 7, 19, 21, 57, 133, 399]] [400, [1, 2, 4, 5, 8, 10, 16, 20, 25, 40, 50, 80, 100, 200, 400]] [401, [1, 401]] [402, [1, 2, 3, 6, 67, 134, 201, 402]] [403, [1, 13, 31, 403]] [404, [1, 2, 4, 101, 202, 404]] [405, [1, 3, 5, 9, 15, 27, 45, 81, 135, 405]] [406, [1, 2, 7, 14, 29, 58, 203, 406]] [407, [1, 11, 37, 407]] [408, [1, 2, 3, 4, 6, 8, 12, 17, 24, 34, 51, 68, 102, 136, 204, 408]] [409, [1, 409]] [410, [1, 2, 5, 10, 41, 82, 205, 410]] [411, [1, 3, 137, 411]] [412, [1, 2, 4, 103, 206, 412]] [413, [1, 7, 59, 413]] [414, [1, 2, 3, 6, 9, 18, 23, 46, 69, 138, 207, 414]] [415, [1, 5, 83, 415]] [416, [1, 2, 4, 8, 13, 16, 26, 32, 52, 104, 208, 416]] [417, [1, 3, 139, 417]] [418, [1, 2, 11, 19, 22, 38, 209, 418]] [419, [1, 419]] [420, [1, 2, 3, 4, 5, 6, 7, 10, 12, 14, 15, 20, 21, 28, 30, 35, 42, 60, 70, 84, 105, 140, 210, 420]] [421, [1, 421]] [422, [1, 2, 211, 422]] [423, [1, 3, 9, 47, 141, 423]] [424, [1, 2, 4, 8, 53, 106, 212, 424]] [425, [1, 5, 17, 25, 85, 425]] [426, [1, 2, 3, 6, 71, 142, 213, 426]] [427, [1, 7, 61, 427]] [428, [1, 2, 4, 107, 214, 428]] [429, [1, 3, 11, 13, 33, 39, 143, 429]] [430, [1, 2, 5, 10, 43, 86, 215, 430]] [431, [1, 431]] [432, [1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 36, 48, 54, 72, 108, 144, 216, 432]] [433, [1, 433]] [434, [1, 2, 7, 14, 31, 62, 217, 434]] [435, [1, 3, 5, 15, 29, 87, 145, 435]] [436, [1, 2, 4, 109, 218, 436]] [437, [1, 19, 23, 437]] [438, [1, 2, 3, 6, 73, 146, 219, 438]] [439, [1, 439]] [440, [1, 2, 4, 5, 8, 10, 11, 20, 22, 40, 44, 55, 88, 110, 220, 440]] [441, [1, 3, 7, 9, 21, 49, 63, 147, 441]] [442, [1, 2, 13, 17, 26, 34, 221, 442]] [443, [1, 443]] [444, [1, 2, 3, 4, 6, 12, 37, 74, 111, 148, 222, 444]] [445, [1, 5, 89, 445]] [446, [1, 2, 223, 446]] [447, [1, 3, 149, 447]] [448, [1, 2, 4, 7, 8, 14, 16, 28, 32, 56, 64, 112, 224, 448]] [449, [1, 449]] [450, [1, 2, 3, 5, 6, 9, 10, 15, 18, 25, 30, 45, 50, 75, 90, 150, 225, 450]] [451, [1, 11, 41, 451]] [452, [1, 2, 4, 113, 226, 452]] [453, [1, 3, 151, 453]] [454, [1, 2, 227, 454]] [455, [1, 5, 7, 13, 35, 65, 91, 455]] [456, [1, 2, 3, 4, 6, 8, 12, 19, 24, 38, 57, 76, 114, 152, 228, 456]] [457, [1, 457]] [458, [1, 2, 229, 458]] [459, [1, 3, 9, 17, 27, 51, 153, 459]] [460, [1, 2, 4, 5, 10, 20, 23, 46, 92, 115, 230, 460]] [461, [1, 461]] [462, [1, 2, 3, 6, 7, 11, 14, 21, 22, 33, 42, 66, 77, 154, 231, 462]] [463, [1, 463]] [464, [1, 2, 4, 8, 16, 29, 58, 116, 232, 464]] [465, [1, 3, 5, 15, 31, 93, 155, 465]] [466, [1, 2, 233, 466]] [467, [1, 467]] [468, [1, 2, 3, 4, 6, 9, 12, 13, 18, 26, 36, 39, 52, 78, 117, 156, 234, 468]] [469, [1, 7, 67, 469]] [470, [1, 2, 5, 10, 47, 94, 235, 470]] [471, [1, 3, 157, 471]] [472, [1, 2, 4, 8, 59, 118, 236, 472]] [473, [1, 11, 43, 473]] [474, [1, 2, 3, 6, 79, 158, 237, 474]] [475, [1, 5, 19, 25, 95, 475]] [476, [1, 2, 4, 7, 14, 17, 28, 34, 68, 119, 238, 476]] [477, [1, 3, 9, 53, 159, 477]] [478, [1, 2, 239, 478]] [479, [1, 479]] [480, [1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 32, 40, 48, 60, 80, 96, 120, 160, 240, 480]] [481, [1, 13, 37, 481]] [482, [1, 2, 241, 482]] [483, [1, 3, 7, 21, 23, 69, 161, 483]] [484, [1, 2, 4, 11, 22, 44, 121, 242, 484]] [485, [1, 5, 97, 485]] [486, [1, 2, 3, 6, 9, 18, 27, 54, 81, 162, 243, 486]] [487, [1, 487]] [488, [1, 2, 4, 8, 61, 122, 244, 488]] [489, [1, 3, 163, 489]] [490, [1, 2, 5, 7, 10, 14, 35, 49, 70, 98, 245, 490]] [491, [1, 491]] [492, [1, 2, 3, 4, 6, 12, 41, 82, 123, 164, 246, 492]] [493, [1, 17, 29, 493]] [494, [1, 2, 13, 19, 26, 38, 247, 494]] [495, [1, 3, 5, 9, 11, 15, 33, 45, 55, 99, 165, 495]] [496, [1, 2, 4, 8, 16, 31, 62, 124, 248, 496]] [497, [1, 7, 71, 497]] [498, [1, 2, 3, 6, 83, 166, 249, 498]] [499, [1, 499]] [500, [1, 2, 4, 5, 10, 20, 25, 50, 100, 125, 250, 500]] [501, [1, 3, 167, 501]] [502, [1, 2, 251, 502]] [503, [1, 503]] [504, [1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 18, 21, 24, 28, 36, 42, 56, 63, 72, 84, 126, 168, 252, 504]] [505, [1, 5, 101, 505]] [506, [1, 2, 11, 22, 23, 46, 253, 506]] [507, [1, 3, 13, 39, 169, 507]] [508, [1, 2, 4, 127, 254, 508]] [509, [1, 509]] [510, [1, 2, 3, 5, 6, 10, 15, 17, 30, 34, 51, 85, 102, 170, 255, 510]] [511, [1, 7, 73, 511]] [512, [1, 2, 4, 8, 16, 32, 64, 128, 256, 512]] [513, [1, 3, 9, 19, 27, 57, 171, 513]] [514, [1, 2, 257, 514]] [515, [1, 5, 103, 515]] [516, [1, 2, 3, 4, 6, 12, 43, 86, 129, 172, 258, 516]] [517, [1, 11, 47, 517]] [518, [1, 2, 7, 14, 37, 74, 259, 518]] [519, [1, 3, 173, 519]] [520, [1, 2, 4, 5, 8, 10, 13, 20, 26, 40, 52, 65, 104, 130, 260, 520]] [521, [1, 521]] [522, [1, 2, 3, 6, 9, 18, 29, 58, 87, 174, 261, 522]] [523, [1, 523]] [524, [1, 2, 4, 131, 262, 524]] [525, [1, 3, 5, 7, 15, 21, 25, 35, 75, 105, 175, 525]] [526, [1, 2, 263, 526]] [527, [1, 17, 31, 527]] [528, [1, 2, 3, 4, 6, 8, 11, 12, 16, 22, 24, 33, 44, 48, 66, 88, 132, 176, 264, 528]] [529, [1, 23, 529]] [530, [1, 2, 5, 10, 53, 106, 265, 530]] [531, [1, 3, 9, 59, 177, 531]] [532, [1, 2, 4, 7, 14, 19, 28, 38, 76, 133, 266, 532]] [533, [1, 13, 41, 533]] [534, [1, 2, 3, 6, 89, 178, 267, 534]] [535, [1, 5, 107, 535]] [536, [1, 2, 4, 8, 67, 134, 268, 536]] [537, [1, 3, 179, 537]] [538, [1, 2, 269, 538]] [539, [1, 7, 11, 49, 77, 539]] [540, [1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 27, 30, 36, 45, 54, 60, 90, 108, 135, 180, 270, 540]] [541, [1, 541]] [542, [1, 2, 271, 542]] [543, [1, 3, 181, 543]] [544, [1, 2, 4, 8, 16, 17, 32, 34, 68, 136, 272, 544]] [545, [1, 5, 109, 545]] [546, [1, 2, 3, 6, 7, 13, 14, 21, 26, 39, 42, 78, 91, 182, 273, 546]] [547, [1, 547]] [548, [1, 2, 4, 137, 274, 548]] [549, [1, 3, 9, 61, 183, 549]] [550, [1, 2, 5, 10, 11, 22, 25, 50, 55, 110, 275, 550]] [551, [1, 19, 29, 551]] [552, [1, 2, 3, 4, 6, 8, 12, 23, 24, 46, 69, 92, 138, 184, 276, 552]] [553, [1, 7, 79, 553]] [554, [1, 2, 277, 554]] [555, [1, 3, 5, 15, 37, 111, 185, 555]] [556, [1, 2, 4, 139, 278, 556]] [557, [1, 557]] [558, [1, 2, 3, 6, 9, 18, 31, 62, 93, 186, 279, 558]] [559, [1, 13, 43, 559]] [560, [1, 2, 4, 5, 7, 8, 10, 14, 16, 20, 28, 35, 40, 56, 70, 80, 112, 140, 280, 560]] [561, [1, 3, 11, 17, 33, 51, 187, 561]] [562, [1, 2, 281, 562]] [563, [1, 563]] [564, [1, 2, 3, 4, 6, 12, 47, 94, 141, 188, 282, 564]] [565, [1, 5, 113, 565]] [566, [1, 2, 283, 566]] [567, [1, 3, 7, 9, 21, 27, 63, 81, 189, 567]] [568, [1, 2, 4, 8, 71, 142, 284, 568]] [569, [1, 569]] [570, [1, 2, 3, 5, 6, 10, 15, 19, 30, 38, 57, 95, 114, 190, 285, 570]] [571, [1, 571]] [572, [1, 2, 4, 11, 13, 22, 26, 44, 52, 143, 286, 572]] [573, [1, 3, 191, 573]] [574, [1, 2, 7, 14, 41, 82, 287, 574]] [575, [1, 5, 23, 25, 115, 575]] [576, [1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 32, 36, 48, 64, 72, 96, 144, 192, 288, 576]] [577, [1, 577]] [578, [1, 2, 17, 34, 289, 578]] [579, [1, 3, 193, 579]] [580, [1, 2, 4, 5, 10, 20, 29, 58, 116, 145, 290, 580]] [581, [1, 7, 83, 581]] [582, [1, 2, 3, 6, 97, 194, 291, 582]] [583, [1, 11, 53, 583]] [584, [1, 2, 4, 8, 73, 146, 292, 584]] [585, [1, 3, 5, 9, 13, 15, 39, 45, 65, 117, 195, 585]] [586, [1, 2, 293, 586]] [587, [1, 587]] [588, [1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42, 49, 84, 98, 147, 196, 294, 588]] [589, [1, 19, 31, 589]] [590, [1, 2, 5, 10, 59, 118, 295, 590]] [591, [1, 3, 197, 591]] [592, [1, 2, 4, 8, 16, 37, 74, 148, 296, 592]] [593, [1, 593]] [594, [1, 2, 3, 6, 9, 11, 18, 22, 27, 33, 54, 66, 99, 198, 297, 594]] [595, [1, 5, 7, 17, 35, 85, 119, 595]] [596, [1, 2, 4, 149, 298, 596]] [597, [1, 3, 199, 597]] [598, [1, 2, 13, 23, 26, 46, 299, 598]] [599, [1, 599]] [600, [1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 25, 30, 40, 50, 60, 75, 100, 120, 150, 200, 300, 600]] [601, [1, 601]] [602, [1, 2, 7, 14, 43, 86, 301, 602]] [603, [1, 3, 9, 67, 201, 603]] [604, [1, 2, 4, 151, 302, 604]] [605, [1, 5, 11, 55, 121, 605]] [606, [1, 2, 3, 6, 101, 202, 303, 606]] [607, [1, 607]] [608, [1, 2, 4, 8, 16, 19, 32, 38, 76, 152, 304, 608]] [609, [1, 3, 7, 21, 29, 87, 203, 609]] [610, [1, 2, 5, 10, 61, 122, 305, 610]] [611, [1, 13, 47, 611]] [612, [1, 2, 3, 4, 6, 9, 12, 17, 18, 34, 36, 51, 68, 102, 153, 204, 306, 612]] [613, [1, 613]] [614, [1, 2, 307, 614]] [615, [1, 3, 5, 15, 41, 123, 205, 615]] [616, [1, 2, 4, 7, 8, 11, 14, 22, 28, 44, 56, 77, 88, 154, 308, 616]] [617, [1, 617]] [618, [1, 2, 3, 6, 103, 206, 309, 618]] [619, [1, 619]] [620, [1, 2, 4, 5, 10, 20, 31, 62, 124, 155, 310, 620]] [621, [1, 3, 9, 23, 27, 69, 207, 621]] [622, [1, 2, 311, 622]] [623, [1, 7, 89, 623]] [624, [1, 2, 3, 4, 6, 8, 12, 13, 16, 24, 26, 39, 48, 52, 78, 104, 156, 208, 312, 624]] [625, [1, 5, 25, 125, 625]] [626, [1, 2, 313, 626]] [627, [1, 3, 11, 19, 33, 57, 209, 627]] [628, [1, 2, 4, 157, 314, 628]] [629, [1, 17, 37, 629]] [630, [1, 2, 3, 5, 6, 7, 9, 10, 14, 15, 18, 21, 30, 35, 42, 45, 63, 70, 90, 105, 126, 210, 315, 630]] [631, [1, 631]] [632, [1, 2, 4, 8, 79, 158, 316, 632]] [633, [1, 3, 211, 633]] [634, [1, 2, 317, 634]] [635, [1, 5, 127, 635]] [636, [1, 2, 3, 4, 6, 12, 53, 106, 159, 212, 318, 636]] [637, [1, 7, 13, 49, 91, 637]] [638, [1, 2, 11, 22, 29, 58, 319, 638]] [639, [1, 3, 9, 71, 213, 639]] [640, [1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 64, 80, 128, 160, 320, 640]] [641, [1, 641]] [642, [1, 2, 3, 6, 107, 214, 321, 642]] [643, [1, 643]] [644, [1, 2, 4, 7, 14, 23, 28, 46, 92, 161, 322, 644]] [645, [1, 3, 5, 15, 43, 129, 215, 645]] [646, [1, 2, 17, 19, 34, 38, 323, 646]] [647, [1, 647]] [648, [1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 27, 36, 54, 72, 81, 108, 162, 216, 324, 648]] [649, [1, 11, 59, 649]] [650, [1, 2, 5, 10, 13, 25, 26, 50, 65, 130, 325, 650]] [651, [1, 3, 7, 21, 31, 93, 217, 651]] [652, [1, 2, 4, 163, 326, 652]] [653, [1, 653]] [654, [1, 2, 3, 6, 109, 218, 327, 654]] [655, [1, 5, 131, 655]] [656, [1, 2, 4, 8, 16, 41, 82, 164, 328, 656]] [657, [1, 3, 9, 73, 219, 657]] [658, [1, 2, 7, 14, 47, 94, 329, 658]] [659, [1, 659]] [660, [1, 2, 3, 4, 5, 6, 10, 11, 12, 15, 20, 22, 30, 33, 44, 55, 60, 66, 110, 132, 165, 220, 330, 660]] [661, [1, 661]] [662, [1, 2, 331, 662]] [663, [1, 3, 13, 17, 39, 51, 221, 663]] [664, [1, 2, 4, 8, 83, 166, 332, 664]] [665, [1, 5, 7, 19, 35, 95, 133, 665]] [666, [1, 2, 3, 6, 9, 18, 37, 74, 111, 222, 333, 666]] [667, [1, 23, 29, 667]] [668, [1, 2, 4, 167, 334, 668]] [669, [1, 3, 223, 669]] [670, [1, 2, 5, 10, 67, 134, 335, 670]] [671, [1, 11, 61, 671]] [672, [1, 2, 3, 4, 6, 7, 8, 12, 14, 16, 21, 24, 28, 32, 42, 48, 56, 84, 96, 112, 168, 224, 336, 672]] [673, [1, 673]] [674, [1, 2, 337, 674]] [675, [1, 3, 5, 9, 15, 25, 27, 45, 75, 135, 225, 675]] [676, [1, 2, 4, 13, 26, 52, 169, 338, 676]] [677, [1, 677]] [678, [1, 2, 3, 6, 113, 226, 339, 678]] [679, [1, 7, 97, 679]] [680, [1, 2, 4, 5, 8, 10, 17, 20, 34, 40, 68, 85, 136, 170, 340, 680]] [681, [1, 3, 227, 681]] [682, [1, 2, 11, 22, 31, 62, 341, 682]] [683, [1, 683]] [684, [1, 2, 3, 4, 6, 9, 12, 18, 19, 36, 38, 57, 76, 114, 171, 228, 342, 684]] [685, [1, 5, 137, 685]] [686, [1, 2, 7, 14, 49, 98, 343, 686]] [687, [1, 3, 229, 687]] [688, [1, 2, 4, 8, 16, 43, 86, 172, 344, 688]] [689, [1, 13, 53, 689]] [690, [1, 2, 3, 5, 6, 10, 15, 23, 30, 46, 69, 115, 138, 230, 345, 690]] [691, [1, 691]] [692, [1, 2, 4, 173, 346, 692]] [693, [1, 3, 7, 9, 11, 21, 33, 63, 77, 99, 231, 693]] [694, [1, 2, 347, 694]] [695, [1, 5, 139, 695]] [696, [1, 2, 3, 4, 6, 8, 12, 24, 29, 58, 87, 116, 174, 232, 348, 696]] [697, [1, 17, 41, 697]] [698, [1, 2, 349, 698]] [699, [1, 3, 233, 699]] [700, [1, 2, 4, 5, 7, 10, 14, 20, 25, 28, 35, 50, 70, 100, 140, 175, 350, 700]] [701, [1, 701]] [702, [1, 2, 3, 6, 9, 13, 18, 26, 27, 39, 54, 78, 117, 234, 351, 702]] [703, [1, 19, 37, 703]] [704, [1, 2, 4, 8, 11, 16, 22, 32, 44, 64, 88, 176, 352, 704]] [705, [1, 3, 5, 15, 47, 141, 235, 705]] [706, [1, 2, 353, 706]] [707, [1, 7, 101, 707]] [708, [1, 2, 3, 4, 6, 12, 59, 118, 177, 236, 354, 708]] [709, [1, 709]] [710, [1, 2, 5, 10, 71, 142, 355, 710]] [711, [1, 3, 9, 79, 237, 711]] [712, [1, 2, 4, 8, 89, 178, 356, 712]] [713, [1, 23, 31, 713]] [714, [1, 2, 3, 6, 7, 14, 17, 21, 34, 42, 51, 102, 119, 238, 357, 714]] [715, [1, 5, 11, 13, 55, 65, 143, 715]] [716, [1, 2, 4, 179, 358, 716]] [717, [1, 3, 239, 717]] [718, [1, 2, 359, 718]] [719, [1, 719]] [720, [1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 30, 36, 40, 45, 48, 60, 72, 80, 90, 120, 144, 180, 240, 360, 720]] [721, [1, 7, 103, 721]] [722, [1, 2, 19, 38, 361, 722]] [723, [1, 3, 241, 723]] [724, [1, 2, 4, 181, 362, 724]] [725, [1, 5, 25, 29, 145, 725]] [726, [1, 2, 3, 6, 11, 22, 33, 66, 121, 242, 363, 726]] [727, [1, 727]] [728, [1, 2, 4, 7, 8, 13, 14, 26, 28, 52, 56, 91, 104, 182, 364, 728]] [729, [1, 3, 9, 27, 81, 243, 729]] [730, [1, 2, 5, 10, 73, 146, 365, 730]] [731, [1, 17, 43, 731]] [732, [1, 2, 3, 4, 6, 12, 61, 122, 183, 244, 366, 732]] [733, [1, 733]] [734, [1, 2, 367, 734]] [735, [1, 3, 5, 7, 15, 21, 35, 49, 105, 147, 245, 735]] [736, [1, 2, 4, 8, 16, 23, 32, 46, 92, 184, 368, 736]] [737, [1, 11, 67, 737]] [738, [1, 2, 3, 6, 9, 18, 41, 82, 123, 246, 369, 738]] [739, [1, 739]] [740, [1, 2, 4, 5, 10, 20, 37, 74, 148, 185, 370, 740]] [741, [1, 3, 13, 19, 39, 57, 247, 741]] [742, [1, 2, 7, 14, 53, 106, 371, 742]] [743, [1, 743]] [744, [1, 2, 3, 4, 6, 8, 12, 24, 31, 62, 93, 124, 186, 248, 372, 744]] [745, [1, 5, 149, 745]] [746, [1, 2, 373, 746]] [747, [1, 3, 9, 83, 249, 747]] [748, [1, 2, 4, 11, 17, 22, 34, 44, 68, 187, 374, 748]] [749, [1, 7, 107, 749]] [750, [1, 2, 3, 5, 6, 10, 15, 25, 30, 50, 75, 125, 150, 250, 375, 750]] [751, [1, 751]] [752, [1, 2, 4, 8, 16, 47, 94, 188, 376, 752]] [753, [1, 3, 251, 753]] [754, [1, 2, 13, 26, 29, 58, 377, 754]] [755, [1, 5, 151, 755]] [756, [1, 2, 3, 4, 6, 7, 9, 12, 14, 18, 21, 27, 28, 36, 42, 54, 63, 84, 108, 126, 189, 252, 378, 756]] [757, [1, 757]] [758, [1, 2, 379, 758]] [759, [1, 3, 11, 23, 33, 69, 253, 759]] [760, [1, 2, 4, 5, 8, 10, 19, 20, 38, 40, 76, 95, 152, 190, 380, 760]] [761, [1, 761]] [762, [1, 2, 3, 6, 127, 254, 381, 762]] [763, [1, 7, 109, 763]] [764, [1, 2, 4, 191, 382, 764]] [765, [1, 3, 5, 9, 15, 17, 45, 51, 85, 153, 255, 765]] [766, [1, 2, 383, 766]] [767, [1, 13, 59, 767]] [768, [1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 768]] [769, [1, 769]] [770, [1, 2, 5, 7, 10, 11, 14, 22, 35, 55, 70, 77, 110, 154, 385, 770]] [771, [1, 3, 257, 771]] [772, [1, 2, 4, 193, 386, 772]] [773, [1, 773]] [774, [1, 2, 3, 6, 9, 18, 43, 86, 129, 258, 387, 774]] [775, [1, 5, 25, 31, 155, 775]] [776, [1, 2, 4, 8, 97, 194, 388, 776]] [777, [1, 3, 7, 21, 37, 111, 259, 777]] [778, [1, 2, 389, 778]] [779, [1, 19, 41, 779]] [780, [1, 2, 3, 4, 5, 6, 10, 12, 13, 15, 20, 26, 30, 39, 52, 60, 65, 78, 130, 156, 195, 260, 390, 780]] [781, [1, 11, 71, 781]] [782, [1, 2, 17, 23, 34, 46, 391, 782]] [783, [1, 3, 9, 27, 29, 87, 261, 783]] [784, [1, 2, 4, 7, 8, 14, 16, 28, 49, 56, 98, 112, 196, 392, 784]] [785, [1, 5, 157, 785]] [786, [1, 2, 3, 6, 131, 262, 393, 786]] [787, [1, 787]] [788, [1, 2, 4, 197, 394, 788]] [789, [1, 3, 263, 789]] [790, [1, 2, 5, 10, 79, 158, 395, 790]] [791, [1, 7, 113, 791]] [792, [1, 2, 3, 4, 6, 8, 9, 11, 12, 18, 22, 24, 33, 36, 44, 66, 72, 88, 99, 132, 198, 264, 396, 792]] [793, [1, 13, 61, 793]] [794, [1, 2, 397, 794]] [795, [1, 3, 5, 15, 53, 159, 265, 795]] [796, [1, 2, 4, 199, 398, 796]] [797, [1, 797]] [798, [1, 2, 3, 6, 7, 14, 19, 21, 38, 42, 57, 114, 133, 266, 399, 798]] [799, [1, 17, 47, 799]] [800, [1, 2, 4, 5, 8, 10, 16, 20, 25, 32, 40, 50, 80, 100, 160, 200, 400, 800]] [801, [1, 3, 9, 89, 267, 801]] [802, [1, 2, 401, 802]] [803, [1, 11, 73, 803]] [804, [1, 2, 3, 4, 6, 12, 67, 134, 201, 268, 402, 804]] [805, [1, 5, 7, 23, 35, 115, 161, 805]] [806, [1, 2, 13, 26, 31, 62, 403, 806]] [807, [1, 3, 269, 807]] [808, [1, 2, 4, 8, 101, 202, 404, 808]] [809, [1, 809]] [810, [1, 2, 3, 5, 6, 9, 10, 15, 18, 27, 30, 45, 54, 81, 90, 135, 162, 270, 405, 810]] [811, [1, 811]] [812, [1, 2, 4, 7, 14, 28, 29, 58, 116, 203, 406, 812]] [813, [1, 3, 271, 813]] [814, [1, 2, 11, 22, 37, 74, 407, 814]] [815, [1, 5, 163, 815]] [816, [1, 2, 3, 4, 6, 8, 12, 16, 17, 24, 34, 48, 51, 68, 102, 136, 204, 272, 408, 816]] [817, [1, 19, 43, 817]] [818, [1, 2, 409, 818]] [819, [1, 3, 7, 9, 13, 21, 39, 63, 91, 117, 273, 819]] [820, [1, 2, 4, 5, 10, 20, 41, 82, 164, 205, 410, 820]] [821, [1, 821]] [822, [1, 2, 3, 6, 137, 274, 411, 822]] [823, [1, 823]] [824, [1, 2, 4, 8, 103, 206, 412, 824]] [825, [1, 3, 5, 11, 15, 25, 33, 55, 75, 165, 275, 825]] [826, [1, 2, 7, 14, 59, 118, 413, 826]] [827, [1, 827]] [828, [1, 2, 3, 4, 6, 9, 12, 18, 23, 36, 46, 69, 92, 138, 207, 276, 414, 828]] [829, [1, 829]] [830, [1, 2, 5, 10, 83, 166, 415, 830]] [831, [1, 3, 277, 831]] [832, [1, 2, 4, 8, 13, 16, 26, 32, 52, 64, 104, 208, 416, 832]] [833, [1, 7, 17, 49, 119, 833]] [834, [1, 2, 3, 6, 139, 278, 417, 834]] [835, [1, 5, 167, 835]] [836, [1, 2, 4, 11, 19, 22, 38, 44, 76, 209, 418, 836]] [837, [1, 3, 9, 27, 31, 93, 279, 837]] [838, [1, 2, 419, 838]] [839, [1, 839]] [840, [1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15, 20, 21, 24, 28, 30, 35, 40, 42, 56, 60, 70, 84, 105, 120, 140, 168, 210, 280, 420, 840]] [841, [1, 29, 841]] [842, [1, 2, 421, 842]] [843, [1, 3, 281, 843]] [844, [1, 2, 4, 211, 422, 844]] [845, [1, 5, 13, 65, 169, 845]] [846, [1, 2, 3, 6, 9, 18, 47, 94, 141, 282, 423, 846]] [847, [1, 7, 11, 77, 121, 847]] [848, [1, 2, 4, 8, 16, 53, 106, 212, 424, 848]] [849, [1, 3, 283, 849]] [850, [1, 2, 5, 10, 17, 25, 34, 50, 85, 170, 425, 850]] [851, [1, 23, 37, 851]] [852, [1, 2, 3, 4, 6, 12, 71, 142, 213, 284, 426, 852]] [853, [1, 853]] [854, [1, 2, 7, 14, 61, 122, 427, 854]] [855, [1, 3, 5, 9, 15, 19, 45, 57, 95, 171, 285, 855]] [856, [1, 2, 4, 8, 107, 214, 428, 856]] [857, [1, 857]] [858, [1, 2, 3, 6, 11, 13, 22, 26, 33, 39, 66, 78, 143, 286, 429, 858]] [859, [1, 859]] [860, [1, 2, 4, 5, 10, 20, 43, 86, 172, 215, 430, 860]] [861, [1, 3, 7, 21, 41, 123, 287, 861]] [862, [1, 2, 431, 862]] [863, [1, 863]] [864, [1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, 36, 48, 54, 72, 96, 108, 144, 216, 288, 432, 864]] [865, [1, 5, 173, 865]] [866, [1, 2, 433, 866]] [867, [1, 3, 17, 51, 289, 867]] [868, [1, 2, 4, 7, 14, 28, 31, 62, 124, 217, 434, 868]] [869, [1, 11, 79, 869]] [870, [1, 2, 3, 5, 6, 10, 15, 29, 30, 58, 87, 145, 174, 290, 435, 870]] [871, [1, 13, 67, 871]] [872, [1, 2, 4, 8, 109, 218, 436, 872]] [873, [1, 3, 9, 97, 291, 873]] [874, [1, 2, 19, 23, 38, 46, 437, 874]] [875, [1, 5, 7, 25, 35, 125, 175, 875]] [876, [1, 2, 3, 4, 6, 12, 73, 146, 219, 292, 438, 876]] [877, [1, 877]] [878, [1, 2, 439, 878]] [879, [1, 3, 293, 879]] [880, [1, 2, 4, 5, 8, 10, 11, 16, 20, 22, 40, 44, 55, 80, 88, 110, 176, 220, 440, 880]] [881, [1, 881]] [882, [1, 2, 3, 6, 7, 9, 14, 18, 21, 42, 49, 63, 98, 126, 147, 294, 441, 882]] [883, [1, 883]] [884, [1, 2, 4, 13, 17, 26, 34, 52, 68, 221, 442, 884]] [885, [1, 3, 5, 15, 59, 177, 295, 885]] [886, [1, 2, 443, 886]] [887, [1, 887]] [888, [1, 2, 3, 4, 6, 8, 12, 24, 37, 74, 111, 148, 222, 296, 444, 888]] [889, [1, 7, 127, 889]] [890, [1, 2, 5, 10, 89, 178, 445, 890]] [891, [1, 3, 9, 11, 27, 33, 81, 99, 297, 891]] [892, [1, 2, 4, 223, 446, 892]] [893, [1, 19, 47, 893]] [894, [1, 2, 3, 6, 149, 298, 447, 894]] [895, [1, 5, 179, 895]] [896, [1, 2, 4, 7, 8, 14, 16, 28, 32, 56, 64, 112, 128, 224, 448, 896]] [897, [1, 3, 13, 23, 39, 69, 299, 897]] [898, [1, 2, 449, 898]] [899, [1, 29, 31, 899]] [900, [1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 25, 30, 36, 45, 50, 60, 75, 90, 100, 150, 180, 225, 300, 450, 900]] [901, [1, 17, 53, 901]] [902, [1, 2, 11, 22, 41, 82, 451, 902]] [903, [1, 3, 7, 21, 43, 129, 301, 903]] [904, [1, 2, 4, 8, 113, 226, 452, 904]] [905, [1, 5, 181, 905]] [906, [1, 2, 3, 6, 151, 302, 453, 906]] [907, [1, 907]] [908, [1, 2, 4, 227, 454, 908]] [909, [1, 3, 9, 101, 303, 909]] [910, [1, 2, 5, 7, 10, 13, 14, 26, 35, 65, 70, 91, 130, 182, 455, 910]] [911, [1, 911]] [912, [1, 2, 3, 4, 6, 8, 12, 16, 19, 24, 38, 48, 57, 76, 114, 152, 228, 304, 456, 912]] [913, [1, 11, 83, 913]] [914, [1, 2, 457, 914]] [[915, [1, 3, 5, 15, 61, 183, 305, 915]] [916, [1, 2, 4, 229, 458, 916]] [917, [1, 7, 131, 917]] [918, [1, 2, 3, 6, 9, 17, 18, 27, 34, 51, 54, 102, 153, 306, 459, 918]] [919, [1, 919]] [920, [1, 2, 4, 5, 8, 10, 20, 23, 40, 46, 92, 115, 184, 230, 460, 920]] [921, [1, 3, 307, 921]] [922, [1, 2, 461, 922]] [923, [1, 13, 71, 923]] [924, [1, 2, 3, 4, 6, 7, 11, 12, 14, 21, 22, 28, 33, 42, 44, 66, 77, 84, 132, 154, 231, 308, 462, 924]] [925, [1, 5, 25, 37, 185, 925]] [926, [1, 2, 463, 926]] [927, [1, 3, 9, 103, 309, 927]] [928, [1, 2, 4, 8, 16, 29, 32, 58, 116, 232, 464, 928]] [929, [1, 929]] [930, [1, 2, 3, 5, 6, 10, 15, 30, 31, 62, 93, 155, 186, 310, 465, 930]] [931, [1, 7, 19, 49, 133, 931]] [932, [1, 2, 4, 233, 466, 932]] [933, [1, 3, 311, 933]] [934, [1, 2, 467, 934]] [935, [1, 5, 11, 17, 55, 85, 187, 935]] [936, [1, 2, 3, 4, 6, 8, 9, 12, 13, 18, 24, 26, 36, 39, 52, 72, 78, 104, 117, 156, 234, 312, 468, 936]] [937, [1, 937]] [938, [1, 2, 7, 14, 67, 134, 469, 938]] [939, [1, 3, 313, 939]] [940, [1, 2, 4, 5, 10, 20, 47, 94, 188, 235, 470, 940]] [941, [1, 941]] [942, [1, 2, 3, 6, 157, 314, 471, 942]] [943, [1, 23, 41, 943]] [944, [1, 2, 4, 8, 16, 59, 118, 236, 472, 944]] [945, [1, 3, 5, 7, 9, 15, 21, 27, 35, 45, 63, 105, 135, 189, 315, 945]] [946, [1, 2, 11, 22, 43, 86, 473, 946]] [947, [1, 947]] [948, [1, 2, 3, 4, 6, 12, 79, 158, 237, 316, 474, 948]] [949, [1, 13, 73, 949]] [950, [1, 2, 5, 10, 19, 25, 38, 50, 95, 190, 475, 950]] [951, [1, 3, 317, 951]] [952, [1, 2, 4, 7, 8, 14, 17, 28, 34, 56, 68, 119, 136, 238, 476, 952]] [953, [1, 953]] [954, [1, 2, 3, 6, 9, 18, 53, 106, 159, 318, 477, 954]] [955, [1, 5, 191, 955]] [956, [1, 2, 4, 239, 478, 956]] [957, [1, 3, 11, 29, 33, 87, 319, 957]] [958, [1, 2, 479, 958]] [959, [1, 7, 137, 959]] [960, [1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 32, 40, 48, 60, 64, 80, 96, 120, 160, 192, 240, 320, 480, 960]] [961, [1, 31, 961]] [962, [1, 2, 13, 26, 37, 74, 481, 962]] [963, [1, 3, 9, 107, 321, 963]] [964, [1, 2, 4, 241, 482, 964]] [965, [1, 5, 193, 965]] [966, [1, 2, 3, 6, 7, 14, 21, 23, 42, 46, 69, 138, 161, 322, 483, 966]] [967, [1, 967]] [968, [1, 2, 4, 8, 11, 22, 44, 88, 121, 242, 484, 968]] [969, [1, 3, 17, 19, 51, 57, 323, 969]] [970, [1, 2, 5, 10, 97, 194, 485, 970]] [971, [1, 971]] [972, [1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, 81, 108, 162, 243, 324, 486, 972]] [973, [1, 7, 139, 973]] [974, [1, 2, 487, 974]] [975, [1, 3, 5, 13, 15, 25, 39, 65, 75, 195, 325, 975]] [976, [1, 2, 4, 8, 16, 61, 122, 244, 488, 976]] [977, [1, 977]] [978, [1, 2, 3, 6, 163, 326, 489, 978]] [979, [1, 11, 89, 979]] [980, [1, 2, 4, 5, 7, 10, 14, 20, 28, 35, 49, 70, 98, 140, 196, 245, 490, 980]] [981, [1, 3, 9, 109, 327, 981]] [982, [1, 2, 491, 982]] [983, [1, 983]] [984, [1, 2, 3, 4, 6, 8, 12, 24, 41, 82, 123, 164, 246, 328, 492, 984]] [985, [1, 5, 197, 985]] [986, [1, 2, 17, 29, 34, 58, 493, 986]] [987, [1, 3, 7, 21, 47, 141, 329, 987]] [988, [1, 2, 4, 13, 19, 26, 38, 52, 76, 247, 494, 988]] [989, [1, 23, 43, 989]] [990, [1, 2, 3, 5, 6, 9, 10, 11, 15, 18, 22, 30, 33, 45, 55, 66, 90, 99, 110, 165, 198, 330, 495, 990]] [991, [1, 991]] [992, [1, 2, 4, 8, 16, 31, 32, 62, 124, 248, 496, 992]] [993, [1, 3, 331, 993]] [994, [1, 2, 7, 14, 71, 142, 497, 994]] [995, [1, 5, 199, 995]] [996, [1, 2, 3, 4, 6, 12, 83, 166, 249, 332, 498, 996]] [997, [1, 997]] [998, [1, 2, 499, 998]] [999, [1, 3, 9, 27, 37, 111, 333, 999]] [1000, [1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 125, 200, 250, 500, 1000]]] Теперь несложно посчитать и сумму делителей чисел от 1 до 1000(которые тоже были получены с помощью программы Derive (по формуле 2.), теперь делители «a» просто складывались): [1, 1] [2, 3] [3, 4] [4, 7] [5, 6] [6, 12] [7, 8] [8, 15] [9, 13] [10, 18] [11, 12] [12, 28] [13, 14] [14, 24] [15, 24] [16, 31] [17, 18] [18, 39] [19, 20] [20, 42] [21, 32] [22, 36] [23, 24] [24, 60] [25, 31] [26, 42] [27, 40] [28, 56] [29, 30] [30, 72] [31, 32] [32, 63] [33, 48] [34, 54] [35, 48] [36, 91] [37, 38] [38, 60] [39, 56] [40, 90] [41, 42] [42, 96] [43, 44] [44, 84] [45, 78] [46, 72] [47, 48] [48, 124] [49, 57] [50, 93] [51, 72] [52, 98] [53, 54] [54, 120] [55, 72] [56, 120] [57, 80] [58, 90] [59, 60] [60, 168] [61, 62] [62, 96] [63, 104] [64, 127] [65, 84] [66, 144] [67, 68] [68, 126] [69, 96] [70, 144] [71, 72] [72, 195] [73, 74] [74, 114] [75, 124] [76, 140] [77, 96] [78, 168] [79, 80] [80, 186] [81, 121] [82, 126] [83, 84] [84, 224] [85, 108] [86, 132] [87, 120] [88, 180] [89, 90] [90, 234] [91, 112] [92, 168] [93, 128] [94, 144] [95, 120] [96, 252] [97, 98] [98, 171] [99, 156] [100, 217] [101, 102] [102, 216] [103, 104] [104, 210] [105, 192] [106, 162] [107, 108] [108, 280] [109, 110] [110, 216] [111, 152] [112, 248] [113, 114] [114, 240] [115, 144] [116, 210] [117, 182] [118, 180] [119, 144] [120, 360] [121, 133] [122, 186] [123, 168] [124, 224] [125, 156] [126, 312] [127, 128] [128, 255] [129, 176] [130, 252] [131, 132] [132, 336] [133, 160] [134, 204] [135, 240] [136, 270] [137, 138] [138, 288] [139, 140] [140, 336] [141, 192] [142, 216] [143, 168] [144, 403] [145, 180] [146, 222] [147, 228] [148, 266] [149, 150] [150, 372] [151, 152] [152, 300] [153, 234] [154, 288] [155, 192] [156, 392] [157, 158] [158, 240] [159, 216] [160, 378] [161, 192] [162, 363] [163, 164] [164, 294] [165, 288] [166, 252] [167, 168] [168, 480] [169, 183] [170, 324] [171, 260] [172, 308] [173, 174] [174, 360] [175, 248] [176, 372] [177, 240] [178, 270] [179, 180] [180, 546] [181, 182] [182, 336] [183, 248] [184, 360] [185, 228] [186, 384] [187, 216] [188, 336] [189, 320] [190, 360] [191, 192] [192, 508] [193, 194] [194, 294] [195, 336] [196, 399] [197, 198] [198, 468] [199, 200] [200, 465] [201, 272] [202, 306] [203, 240] [204, 504] [205, 252] [206, 312] [207, 312] [208, 434] [209, 240] [210, 576] [211, 212] [212, 378] [213, 288] [214, 324] [215, 264] [216, 600] [217, 256] [218, 330] [219, 296] [220, 504] [221, 252] [222, 456] [223, 224] [224, 504] [225, 403] [226, 342] [227, 228] [228, 560] [229, 230] [230, 432] [231, 384] [232, 450] [233, 234] [234, 546] [235, 288] [236, 420] [237, 320] [238, 432] [239, 240] [240, 744] [241, 242] [242, 399] [243, 364] [244, 434] [245, 342] [246, 504] [247, 280] [248, 480] [249, 336] [250, 468] [251, 252] [252, 728] [253, 288] [254, 384] [255, 432] [256, 511] [257, 258] [258, 528] [259, 304] [260, 588] [261, 390] [262, 396] [263, 264] [264, 720] [265, 324] [266, 480] [267, 360] [268, 476] [269, 270] [270, 720] [271, 272] [272, 558] [273, 448] [274, 414] [275, 372] [276, 672] [277, 278] [278, 420] [279, 416] [280, 720] [281, 282] [282, 576] [283, 284] [284, 504] [285, 480] [286, 504] [287, 336] [288, 819] [289, 307] [290, 540] [291, 392] [292, 518] [293, 294] [294, 684] [295, 360] [296, 570] [297, 480] [298, 450] [299, 336] [300, 868] [301, 352] [302, 456] [303, 408] [304, 620] [305, 372] [306, 702] [307, 308] [308, 672] [309, 416] [310, 576] [311, 312] [312, 840] [313, 314] [314, 474] [315, 624] [316, 560] [317, 318] [318, 648] [319, 360] [320, 762] [321, 432] [322, 576] [323, 360] [324, 847] [325, 434] [326, 492] [327, 440] [328, 630] [329, 384] [330, 864] [331, 332] [332, 588] [333, 494] [334, 504] [335, 408] [336, 992] [337, 338] [338, 549] [339, 456] [340, 756] [341, 384] [342, 780] [343, 400] [344, 660] [345, 576] [346, 522] [347, 348] [348, 840] [349, 350] [350, 744] [351, 560] [352, 756] [353, 354] [354, 720] [355, 432] [356, 630] [357, 576] [358, 540] [359, 360] [360, 1170] [361, 381] [362, 546] [363, 532] [364, 784] [365, 444] [366, 744] [367, 368] [368, 744] [369, 546] [370, 684] [371, 432] [372, 896] [373, 374] [374, 648] [375, 624] [376, 720] [377, 420] [378, 960] [379, 380] [380, 840] [381, 512] [382, 576] [383, 384] [384, 1020] [385, 576] [386, 582] [387, 572] [388, 686] [389, 390] [390, 1008] [391, 432] [392, 855] [393, 528] [394, 594] [395, 480] [396, 1092] [397, 398] [398, 600] [399, 640] [400, 961] [401, 402] [402, 816] [403, 448] [404, 714] [405, 726] [406, 720] [407, 456] [408, 1080] [409, 410] [410, 756] [411, 552] [412, 728] [413, 480] [414, 936] [415, 504] [416, 882] [417, 560] [418, 720] [419, 420] [420, 1344] [421, 422] [422, 636] [423, 624] [424, 810] [425, 558] [426, 864] [427, 496] [428, 756] [429, 672] [430, 792] [431, 432] [432, 1240] [433, 434] [434, 768] [435, 720] [436, 770] [437, 480] [438, 888] [439, 440] [440, 1080] [441, 741] [442, 756] [443, 444] [444, 1064] [445, 540] [446, 672] [447, 600] [448, 1016] [449, 450] [450, 1209] [451, 504] [452, 798] [453, 608] [454, 684] [455, 672] [456, 1200] [457, 458] [458, 690] [459, 720] [460, 1008] [461, 462] [462, 1152] [463, 464] [464, 930] [465, 768] [466, 702] [467, 468] [468, 1274] [469, 544] [470, 864] [471, 632] [472, 900] [473, 528] [474, 960] [475, 620] [476, 1008] [477, 702] [478, 720] [479, 480] [480, 1512] [481, 532] [482, 726] [483, 768] [484, 931] [485, 588] [486, 1092] [487, 488] [488, 930] [489, 656] [490, 1026] [491, 492] [492, 1176] [493, 540] [494, 840] [495, 936] [496, 992] [497, 576] [498, 1008] [499, 500] [500, 1092] [501, 672] [502, 756] [503, 504] [504, 1560] [505, 612] [506, 864] [507, 732] [508, 896] [509, 510] [510, 1296] [511, 592] [512, 1023] [513, 800] [514, 774] [515, 624] [516, 1232] [517, 576] [518, 912] [519, 696] [520, 1260] [521, 522] [522, 1170] [523, 524] [524, 924] [525, 992] [526, 792] [527, 576] [528, 1488] [529, 553] [530, 972] [531, 780] [532, 1120] [533, 588] [534, 1080] [535, 648] [536, 1020] [537, 720] [538, 810] [539, 684] [540, 1680] [541, 542] [542, 816] [543, 728] [544, 1134] [545, 660] [546, 1344] [547, 548] [548, 966] [549, 806] [550, 1116] [551, 600] [552, 1440] [553, 640] [554, 834] [555, 912] [556, 980] [557, 558] [558, 1248] [559, 616] [560, 1488] [561, 864] [562, 846] [563, 564] [564, 1344] [565, 684] [566, 852] [567, 968] [568, 1080] [569, 570] [570, 1440] [571, 572] [572, 1176] [573, 768] [574, 1008] [575, 744] [576, 1651] [577, 578] [578, 921] [579, 776] [580, 1260] [581, 672] [582, 1176] [583, 648] [584, 1110] [585, 1092] [586, 882] [587, 588] [588, 1596] [589, 640] [590, 1080] [591, 792] [592, 1178] [593, 594] [594, 1440] [595, 864] [596, 1050] [597, 800] [598, 1008] [599, 600] [600, 1860] [601, 602] [602, 1056] [603, 884] [604, 1064] [605, 798] [606, 1224] [607, 608] [608, 1260] [609, 960] [610, 1116] [611, 672] [612, 1638] [613, 614] [614, 924] [615, 1008] [616, 1440] [617, 618] [618, 1248] [619, 620] [620, 1344] [621, 960] [622, 936] [623, 720] [624, 1736] [625, 781] [626, 942] [627, 960] [628, 1106] [629, 684] [630, 1872] [631, 632] [632, 1200] [633, 848] [634, 954] [635, 768] [636, 1512] [637, 798] [638, 1080] [639, 936] [640, 1530] [641, 642] [642, 1296] [643, 644] [644, 1344] [645, 1056] [646, 1080] [647, 648] [648, 1815] [649, 720] [650, 1302] [651, 1024] [652, 1148] [653, 654] [654, 1320] [655, 792] [656, 1302] [657, 962] [658, 1152] [659, 660] [660, 2016] [661, 662] [662, 996] [663, 1008] [664, 1260] [665, 960] [666, 1482] [667, 720] [668, 1176] [669, 896] [670, 1224] [671, 744] [672, 2016] [673, 674] [674, 1014] [675, 1240] [676, 1281] [677, 678] [678, 1368] [679, 784] [680, 1620] [681, 912] [682, 1152] [683, 684] [684, 1820] [685, 828] [686, 1200] [687, 920] [688, 1364] [689, 756] [690, 1728] [691, 692] [692, 1218] [693, 1248] [694, 1044] [695, 840] [696, 1800] [697, 756] [698, 1050] [699, 936] [700, 1736] [701, 702] [702, 1680] [703, 760] [704, 1524] [705, 1152] [706, 1062] [707, 816] [708, 1680] [709, 710] [710, 1296] [711, 1040] [712, 1350] [713, 768] [714, 1728] [715, 1008] [716, 1260] [717, 960] [718, 1080] [719, 720] [720, 2418] [721, 832] [722, 1143] [723, 968] [724, 1274] [725, 930] [726, 1596] [727, 728] [728, 1680] [729, 1093] [730, 1332] [731, 792] [732, 1736] [733, 734] [734, 1104] [735, 1368] [736, 1512] [737, 816] [738, 1638] [739, 740] [740, 1596] [741, 1120] [742, 1296] [743, 744] [744, 1920] [745, 900] [746, 1122] [747, 1092] [748, 1512] [749, 864] [750, 1872] [751, 752] [752, 1488] [753, 1008] [754, 1260] [755, 912] [756, 2240] [757, 758] [758, 1140] [759, 1152] [760, 1800] [761, 762] [762, 1536] [763, 880] [764, 1344] [765, 1404] [766, 1152] [767, 840] [768, 2044] [769, 770] [770, 1728] [771, 1032] [772, 1358] [773, 774] [774, 1716] [775, 992] [776, 1470] [777, 1216] [778, 1170] [779, 840] [780, 2352] [781, 864] [782, 1296] [783, 1200] [784, 1767] [785, 948] [786, 1584] [787, 788] [788, 1386] [789, 1056] [790, 1440] [791, 912] [792, 2340] [793, 868] [794, 1194] [795, 1296] [796, 1400] [797, 798] [798, 1920] [799, 864] [800, 1953] [801, 1170] [802, 1206] [803, 888] [804, 1904] [805, 1152] [806, 1344] [807, 1080] [808, 1530] [809, 810] [810, 2178] [811, 812] [812, 1680] [813, 1088] [814, 1368] [815, 984] [816, 2232] [817, 880] [818, 1230] [819, 1456] [820, 1764] [821, 822] [822, 1656] [823, 824] [824, 1560] [825, 1488] [826, 1440] [827, 828] [828, 2184] [829, 830] [830, 1512] [831, 1112] [832, 1778] [833, 1026] [834, 1680] [835, 1008] [836, 1680] [837, 1280] [838, 1260] [839, 840] [840, 2880] [841, 871] [842, 1266] [843, 1128] [844, 1484] [845, 1098] [846, 1872] [847, 1064] [848, 1674] [849, 1136] [850, 1674] [851, 912] [852, 2016] [853, 854] [854, 1488] [855, 1560] [856, 1620] [857, 858] [858, 2016] [859, 860] [860, 1848] [861, 1344] [862, 1296] [863, 864] [864, 2520] [865, 1044] [866, 1302] [867, 1228] [868, 1792] [869, 960] [870, 2160] [871, 952] [872, 1650] [873, 1274] [874, 1440] [875, 1248] [876, 2072] [877, 878] [878, 1320] [879, 1176] [880, 2232] [881, 882] [882, 2223] [883, 884] [884, 1764] [885, 1440] [886, 1332] [887, 888] [888, 2280] [889, 1024] [890, 1620] [891, 1452] [892, 1568] [893, 960] [894, 1800] [895, 1080] [896, 2040] [897, 1344] [898, 1350] [899, 960] [900, 2821] [901, 972] [902, 1512] [903, 1408] [904, 1710] [905, 1092] [906, 1824] [907, 908] [908, 1596] [909, 1326] [910, 2016] [911, 912] [912, 2480] [913, 1008] [914, 1374] [915, 1488] [916, 1610] [917, 1056] [918, 2160] [919, 920] [920, 2160] [921, 1232] [922, 1386] [923, 1008] [924, 2688] [925, 1178] [926, 1392] [927, 1352] [928, 1890] [929, 930] [930, 2304] [931, 1140] [932, 1638] [933, 1248] [934, 1404] [935, 1296] [936, 2730] [937, 938] [938, 1632] [939, 1256] [940, 2016] [941, 942] [942, 1896] [943, 1008] [944, 1860] [945, 1920] [946, 1584] [947, 948] [948, 2240] [949, 1036] [950, 1860] [951, 1272] [952, 2160] [953, 954] [954, 2106] [955, 1152] [956, 1680] [957, 1440] [958, 1440] [959, 1104] [960, 3048] [961, 993] [962, 1596] [963, 1404] [964, 1694] [965, 1164] [966, 2304] [967, 968] [968, 1995] [969, 1440] [970, 1764] [971, 972] [972, 2548] [973, 1120] [974, 1464] [975, 1736] [976, 1922] [977, 978] [978, 1968] [979, 1080] [980, 2394] [981, 1430] [982, 1476] [983, 984] [984, 2520] [985, 1188] [986, 1620] [987, 1536] [988, 1960] [989, 1056] [990, 2808] [991, 992] [992, 2016] [993, 1328] [994, 1728] [995, 1200] [996, 2352] [997, 998] [998, 1500] [999, 1520] [1000, 2340] Теперь посмотрим, все ли числа являются суммой делителей какого-либо числа и есть ли такие числа сумма делителей которых равна (в первых двух сотнях). Ниже приведена таблица: [[4, 7]](на втором месте сумма делителей, а на первом число с данной суммой делителей) … [[1, 1]], [2] (т.е. нет такого числа с суммой делителей равной двум): [1,1] [2] [2,3] [3,4] [5] [5,6] [4,7] [7,8] [9] [10] [11] [6,12] [11, 12] [9,13] [13,14] [8,15] [16] [17] [10,18] [17,18] [19] [19.20] [21] [22] [23] [14,24] [15,24] [23,24] [25] [26] [27] [12, 28]. [29] [29,30] [16,31] [25.31] [21,32] [31,32] [33] [34] [35] [22,36] [37] [37,38] [18,39] [27, 40] [41] [20,42] [26,42] [41,42]. [43] [43,44]. [45] [46] [47] [33,48]. [35,4 8] [47,48] [49] [50] [51] [52] [53] [34,54] [53, 54] [55] [28,56] [39.56] [49,57] [58] [59] [24,60] [38.60] [59,60] [61] [61,62] [32,63] [64] [65] [66] [67] [67, 68] [69] [70] [71] [30,72] [46,72] [51,72] [55,72] [71,72] [73] [73,74] [75] [76] [77] [45,78] [79] [57,80] [79,80] [81] [82] [83] [44,84] [65,84] [83,84] [85] [86] [87] [88] [89] [40, 90] [58,90] [89,90] [36,91] [92] [50,93]. [94] [95] [42, 96] [62,96] [69,96] [77,96] [97] [52,98] [97,98] [99] [100] [101] [102] [103] [63,104] [105] [106] [107] [85,108] [109] [110] [111] [91, 112] [113] [74,114], [115] [116] [117] [118] [119] [54,120] [56,120] [87,120] [95,120] [81,121] [122] [123] [48,124] [75, 124] [125] [68,126] [82.126] [64,127] [9 3,128] [129] [130] [131] [86,132] [133] [134] [135] [136] [137] [138] [139] [76,140] [141] [142] [143] [66,144] [70,144] [94,144] [145] [146] [147] [178] [149] [150] [151] [152] [153] [154] [155] [99,156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [60,168] [78,168] [92,168] [169] [170] [98,171] [172] [173] [174] [175] [176] [177] [178] [179] [88,180] [181] [182] [183] [184] [185] [80,186] [187] [188] [189] [190] [191] [192] [193] [194] [72,195] [196] [197] [198] [199] [200] Как мы заметили, есть такие числа, которые не являются суммой делителей ни одного числа и так же есть такие числа, которые являются суммой делителей ни одного, а нескольких чисел. Теперь посмотрим только те числа, которые являются суммой делителей ни одного, а нескольких чисел: [6,12], [11,12] [10,18], [17,18] [14,24], [15,24], [23,24] [16,31]. [25,31] [21,32], [31,32] [20, 42], [26,42], [41,42] [33,48], [35,48], [47,48] [34,5 4], [53,54] [28,56], [39,56] [24,60], [38,60], [59, 60] [30,72], [46,72], [51,72], [55,72], [71,72] [57,80], [79,80] [44,84], [65,84], [83,84] [40,90], [58, 9 0], [89,90] [42,96], [62,96], [69,96], [77,96] [52,98], [97,98] [54,120], [56, 120], [87,120], [95,120] [48,124], [75,124] [68,126], [82,126] [66,144], [70, 144], [94,144] [60,168], [78,168], [92,168] Отсюда можно сделать вывод, что нахождение числа по его сумме делителей не всегда возможно и не всегда однозначно.
Теперь построим график. По оси Х расположим числа, а по оси Y их сумму делителей (числа от 1 до 1000): Посмотрим, что же у нас получилось: на графике отчётливо просматриваются несколько прямых линий, например, нижняя это – простые числа. Верхняя граница – это наиболее сложные числа (имеющие наибольшее количество делителей) - это не прямая, но и не парабола. Скорее всего, – это показательная функция (у = ах). В мемуарах Эйлера я нашел много интересных мне рассуждений(σ(n) – сумма делителей числа n): Определив значение σ(n) мы ясно видим, что если p – простое, то σ(p)= p + 1. σ(1)=1, а если число n – составное, то σ(n)>1 + n. Если a, b, c, d – различные простые числа, то мы видим: σ(ab)=1+a+b+ab=(1+a)(1+b)= σ(a)σ(b) σ(abcd)= σ(a)σ(b)σ(c)σ(d) σ(a^2)=1+a+a2= σ(a^3)=1+a+a2+a3= И вообще σ(nn)= Пользуясь этим: σ(aqbwcedr)= σ(aq)σ(bw)σ(ce)σ(dr) Например σ(360), 360 = 23*32*5 => σ(23) σ(32) σ(5)=15*13*6=1170. Чтобы показать последовательность сумм делителей приведём таблицу:
Если σ(n) обозначает член любой этой последовательности, а σ(n - 1), σ(n - 2), σ(n - 3)… предшествующие члены, то σ(n) всегда можно получить по нескольким предыдущим членам: σ(n) = σ(n - 1) + σ(n - 2) - σ(n - 5) - σ(n - 7) + σ(n - 12) + σ(n - 15) - σ(n - 22) - σ(n – 26) + … (**) Знаки «+» «-» в правой части формулы попарно чередуются. Закон чисел 1, 2, 5, 7, 12, 15…,которые мы должны вычитать из рассматриваемого числа n, станет ясен если мы возьмем их разности: Числа:1, 2, 5, 7, 12, 15, 22, 26, 35, 40, 51, 57, 70, 77, 92, 100… Разности: 1, 3, 2, 5, 3, 7, 4, 9, 5, 11, 6, 13, 7, 15, 8… В самом деле, мы имеем здесь поочередно все целые числа 1, 2, 3, 4, 5, 6, 7… и нечетные 3, 5, 7,9 11… Хотя эта последовательность бесконечна, мы должны в каждом случае брать только те члены, для которых числа стоящие под знаком σ, еще положительны, и опускать σ для отрицательных чисел. Если в нашей формуле встретиться σ(0), то, поскольку его значение само по себе является неопределённым, мы должны подставить вместо σ(0) рассматриваемое число n. Примеры: σ(1) = σ(0) =1 = 1 σ(2) = σ(1) + σ(0) = 1 + 2 = 3 … σ(20) = σ(19)+σ(18)-σ(15)-σ(13)+9σ(8)+σ(5)=20+39-24-14+15+6= 42 Доказательство теоремы (**) я приводить не буду. Вообще, найти сумму всех делителей числа можно с помощью канонического разложения натурального числа (это уже было сказано выше). Сумму делителей числа n обозначают σ(n). Легко найти σ(n) для небольших натуральных чисел, например σ(12) = 1+2+3+4+6+12=28(это было приведено выше). Но при достаточно больших числах отыскивание всех делителей, а тем более их суммы становится затруднительным. Совсем другое дело, если уже известно, что каноническое разложение числа n таково:. Его делителями являются все числа , для которых 0 ≤ βs ≤ αs, s = 1, …, k. Ясно, что σ(n) представляет собой сумму всех таких чисел при различных значениях показателей β1, β2, … βk. Этот результат мы получим раскрыв скобки в произведении По формуле конечного числа членов геометрической прогрессии приходим к равенству (*) По этой формуле σ(360) = . Формулу для вычисления значения функции σ(n) вывел замечательный английский математик Джон Валлис(1616 - 1703) – один из основателей и первых членов Лондонского Королевства общества (Академии наук). Он был первым из английских математиков, начавших заниматься математическим анализом. Ему принадлежат многие обозначения и термины, применяемые сейчас в математике, в частности знак ∞ для обозначения бесконечности. Валлис вывел удивительную формулу, представляющую число π в виде бесконечного произведения:
Д. Валлис много занимался комбинаторикой и её приложениями к теории шифров, не без основания считая себя родоначальником новой науки – криптологии (от греч. «криптос» - тайный, «логос» - наука, учение). Он был одним из лучших шифровальщиков своего времени и по поручению министра полиции Терло занимался в республиканском правительстве Кромвеля расшифровкой посланий монархических заговорщиков. С функцией σ(n) связан ряд любопытных задач. Например: 1.) Найти пару целых чисел, удовлетворяющих условию: σ(m1)=m2, σ(m2)=m1. Некоторые из них не удаётся решить даже с использованием формулы (*). Так, например, не иначе как подбором можно найти числа, для которых σ(n) есть квадрат некоторого натурального числа. Такими числами являются 22, 66, 70, 81, 343, 1501, 4479865. Вот ещё две задачи, приведённые в 1657 г. Пьером Ферма: 1.) найти такое m, для которого σ(m3) – квадрат натурального числа (Ферма нашёл не одно решение этой задачи); 2.) найти такое m, для которого σ(m2) – куб натурального числа. Например, одним из решений первой задачи является m = 7, а для второй m = 43098. С помощью программы Derive, я попробовал найти ещё решения и у меня этого не получилось. (я рассматривал σ(m3) = n2, где m принимает значения от 1 до 1000, а n от 1 до 5000 в 1.) и тоже самое в 2.) ) Формулы: 1. DELITELI(m) := SELECT(MOD(m, n) = 0, n, 1, m) DIMENSION(DELITELI(m)) 2. SUMMADELITELEY(m) := Σ ELEMENT(DELITELI(m), i) i=1 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|