рефераты
Главная

Рефераты по рекламе

Рефераты по физике

Рефераты по философии

Рефераты по финансам

Рефераты по химии

Рефераты по хозяйственному праву

Рефераты по цифровым устройствам

Рефераты по экологическому праву

Рефераты по экономико-математическому моделированию

Рефераты по экономической географии

Рефераты по экономической теории

Рефераты по этике

Рефераты по юриспруденции

Рефераты по языковедению

Рефераты по юридическим наукам

Рефераты по истории

Рефераты по компьютерным наукам

Рефераты по медицинским наукам

Рефераты по финансовым наукам

Рефераты по управленческим наукам

Психология и педагогика

Промышленность производство

Биология и химия

Языкознание филология

Издательское дело и полиграфия

Рефераты по краеведению и этнографии

Рефераты по религии и мифологии

Рефераты по медицине

Рефераты по сексологии

Рефераты по информатике программированию

Краткое содержание произведений

Курсовая работа: Сканирующая зондовая микроскопия

Курсовая работа: Сканирующая зондовая микроскопия

Введение

В настоящее время бурно развивается научно-техническое направление - нанотехнология, охватывающее широкий круг, как фундаментальных, так и прикладных исследований. Это принципиально новая технология, способная решать проблемы в таких разных областях, как связь, биотехнология, микроэлектроника и энергетика. Сегодня больше сотни молодых компаний разрабатывают нанотехнологические продукты, которые выйдут на рынок в ближайшие два - три года.

Нанотехнологии станут ведущими, в 21-м веке, технологиями и будут способствовать развитию экономики и социальной сферы общества, они могут стать предпосылкой новой промышленной революции. В предыдущие двести лет прогресс в промышленной революции был достигнут ценой затрат около 80% ресурсов Земли. Нанотехнологии позволят значительно уменьшить объем потребления ресурсов и не окажут давления на окружающую среду, они будут играть ведущую роль в жизни человечества, как, например, компьютер стал неотъемлемой частью жизни людей [1].

Прогресс в нанотехнологии стимулировался развитием экспериментальных методов исследований, наиболее информативными из которых являются методы сканирующей зондовой микроскопии, изобретением и в особенности распространением которых мир обязан нобелевским лауреатам 1986 года – профессору Генриху Рореру и доктору Герду Биннигу [2].

Мир был заворожен открытием столь простых методов визуализации атомов, да еще с возможностью манипуляции ими. Многие исследовательские группы принялись конструировать самодельные приборы и экспериментировать в данном направлении. В результате был рожден ряд удобных схем приборов, были предложены различные методы визуализации результатов взаимодействия зонд-поверхность, такие как: микроскопия латеральных сил, магнитно-силовая микроскопия, микроскопия регистрации магнитных, электростатических, электромагнитных взаимодействий. Получили интенсивное развитие методы ближнепольной оптической микроскопии. Были разработаны методы направленного, контролируемого воздействия в системе зонд-поверхность, например, нанолитография – изменения происходят на поверхности под действием электрических, магнитных воздействий, пластических деформаций, света в системе зонд-поверхность. Были созданы технологии производства зондов с заданными геометрическими параметрами, со специальными покрытиями и структурами для визуализации различных свойств поверхностей [1].

Сканирующая зондовая микроскопия (СЗМ) – один из мощных современных методов исследования морфологии и локальных свойств поверхности твердого тела с высоким пространственным разрешением. За последние 10 лет сканирующая зондовая микроскопия превратилась из экзотической методики, доступной лишь ограниченному числу исследовательских групп, в широко распространенный и успешно применяемый инструмент для исследования свойств поверхности. В настоящее время практически ни одно исследование в области физики поверхности и тонкопленочных технологий не обходится без применения методов СЗМ. Развитие сканирующей зондовой микроскопии послужило также основой для развития новых методов в нанотехнологии – технологии создания структур с нанометровыми масштабами [3].


1. Историческая справка

Для наблюдения мелких объектов голландец Антони ван Левенгук в 17 веке изобрел микроскоп, открыв мир микробов. Его микроскопы был несовершенными и давали увеличение от 150 до 300 раз. Но е го последователи усовершенствовали этот оптический прибор, заложив фундамент для многих открытий в биологии, геологии, физике. Однако в конце 19 века (1872 г.) немецкий оптик Эрнст Карл Аббе показал, что из-за дифракции света разрешающая способность микроскопа (то есть минимальное расстояние между объектами, когда они еще не сливаются в одно изображение) ограничена длиной световой волны (0.4 – 0.8 мкм). Тем самым он сэкономил массу усилий оптиков, пытавшихся сделать более совершенные микроскопы, но разочаровал биологов и геологов, лишившихся надежды получить прибор с увеличением выше 1500x.

История создания электронного микроскопа – замечательный пример того, как самостоятельно развивающиеся области науки и техники могут, обмениваясь полученной информацией и объединяя усилия, создавать новый мощный инструмент научных исследований. Вершиной классической физики была теория электромагнитного поля, которая объяснила распространение света, возникновение электрических и магнитных полей, движение заряженных частиц в этих полях как распространение электромагнитных волн. Волновая оптика сделала понятными явление дифракции, механизм формирования изображения и игру факторов, определяющих разрешение, в световом микроскопе. Успехам в области теоретической и экспериментальной физики мы обязаны открытием электрона с его специфическими свойствами. Эти отдельные и, казалось бы, независимые пути развития привели к созданию основ электронной оптики, одним из важнейших приложений которой являлось изобретение ЭМ в 1930-х годах. Прямым намеком на такую возможность можно считать гипотезу о волновой природы электрона, выдвинутую в 1924 Луи де Бройлем и экспериментально подтвержденную в 1927 К.Дэвиссоном и Л.Джермером в США и Дж.Томсоном в Англии. Тем самым была подсказана аналогия, позволившая построить ЭМ по законам волновой оптики. Х.Буш обнаружил, что с помощью электрических и магнитных полей можно формировать электронные изображения. В первые два десятилетия 20 в. были созданы и необходимые технические предпосылки. Промышленные лаборатории, работавшие над электронно-лучевым осциллографом, дали вакуумную технику, стабильные источники высокого напряжения и тока, хорошие электронные эмиттеры [2].

В 1931 Р.Руденберг подал патентную заявку на просвечивающий электронный микроскоп, а в 1932 М.Кнолль и Э.Руска построили первый такой микроскоп, применив магнитные линзы для фокусировки электронов. Этот прибор был предшественником современного оптического просвечивающего электронного микроскопа (ОПЭМ). (Руска был вознагражден за свои труды тем, что стал лауреатом Нобелевской премии по физике за 1986.) В 1938 Руска и Б. фон Боррис построили прототип промышленного ОПЭМ для фирмы «Сименс-Хальске» в Германии; этот прибор в конце концов позволил достичь разрешения 100 нм. Несколькими годами позднее А.Пребус и Дж.Хиллер построили первый ОПЭМ высокого разрешения в Торонтском университете (Канада).

Широкие возможности ОПЭМ почти сразу же стали очевидны. Его промышленное производство было начато одновременно фирмой «Сименс-Хальске» в Германии и корпорацией RCA в США. В конце 1940-х годов такие приборы стали выпускать и другие компании [2].

РЭМ в его нынешней форме был изобретен в 1952 Чарльзом Отли. Правда, предварительные варианты такого устройства были построены Кноллем в Германии в 1930-х годах и Зворыкиным с сотрудниками в корпорации RCA в 1940-х годах, но лишь прибор Отли смог послужить основой для ряда технических усовершенствований, завершившихся внедрением в производство промышленного варианта РЭМ в середине 1960-х годов. Круг потребителей такого довольно простого в обращении прибора с объемным изображением и электронным выходным сигналом расширился с быстротой взрыва. В настоящее время насчитывается добрый десяток промышленных изготовителей РЭМ'ов на трех континентах и десятки тысяч таких приборов, используемых в лабораториях всего мира. В 1960-х годах разрабатывались сверхвысоковольтные микроскопы для исследования более толстых образцов. Лидером этого направления разработок был Г.Дюпуи во Франции, где в 1970 был введен в действие прибор с ускоряющим напряжением, равным 3,5 млн. вольт. РТМ был изобретен Г.Биннигом и Г.Рорером в 1979 в Цюрихе. Этот весьма простой по устройству прибор обеспечивает атомное разрешение поверхностей. За свою работу по созданию РТМ Бинниг и Рорер (одновременно с Руской) получили Нобелевскую премию.

В 1986 году Рорером и Биннигом был изобретен сканирующий зондовый микроскоп. С момента своего изобретения СТМ широко используется учеными самых разных специальностей, охватывающих практически все естественнонаучные дисциплины начиная от фундаментальных исследований в области физики, химии, биологии и до конкретных технологических приложений. Принцип действия СТМ настолько прост, а потенциальные возможности так велики, что невозможно предсказать его воздействие на науку и технику даже ближайшего будущего.

Как оказалось в дальнейшем, практически любые взаимодействия острийного зонда с поверхностью (механические, магнитные) могут быть преобразованы с помощью соответствующих приборов и компьютерных программ в изображение поверхности [2].

Установка сканирующего зондового микроскопа состоит из нескольких функциональных блоков, изображенных на рис. 1. Это, во-первых, сам микроскоп с пьезоманипулятором для управления зондом, преобразователем туннельного тока в напряжение и шаговым двигателем для подвода образца; блок аналого-цифровых и цифро-аналоговых преобразователей и высоковольтных усилителей; блок управления шаговым двигателем; плата с сигнальным процессором, рассчитывающим сигнал обратной связи; компьютер, собирающий информацию и обеспечивающий интерфейс с пользователем. Конструктивно блок ЦАПов и АЦП установлен в одном корпусе с блоком управления шаговым двигателем. Плата с сигнальным процессором (DSP – Digital Signal Processor) ADSP 2171 фирмы Analog Devices установлена в ISA слот расширения персонального компьютера [4].

Общий вид механической системы микроскопа представлен на рис. 2. В механическую систему входит основание с пьезоманипулятором и системой плавной подачи образца на шаговом двигателе с редуктором и две съемные измерительные головки для работы в режимах сканирующей туннельной и атомно-силовой микроскопии. Микроскоп позволяет получить устойчивое атомное разрешение на традиционных тестовых поверхностях без применения дополнительных сейсмических и акустических фильтров [4].


2. Принципы работы сканирующих зондовых микроскопов

В сканирующих зондовых микроскопах исследование микрорельефа поверхности и ее локальных свойств проводится с помощью специальным образом приготовленных зондов в виде игл. Рабочая часть таких зондов (острие) имеет размеры порядка десяти нанометров. Характерное расстояние между зондом и поверхностью образцов в зондовых микроскопах по порядку величин составляет 0,1 – 10 нм. В основе работы зондовых микроскопов лежат различные типы взаимодействия зонда с поверхностью. Так, работа туннельного микроскопа основана на явлении протекания туннельного тока между металлической иглой и проводящим образцом; различные типы силового взаимодействия лежат в основе работы атомно-силового, магнитно-силового и электросилового микроскопов. Рассмотрим общие черты, присущие различным зондовым микроскопам. Пусть взаимодействие зонда с поверхностью характеризуется некоторым параметром Р. Если существует достаточно резкая и взаимно однозначная зависимость параметра Р от расстояния зонд-образец, то данный параметр может быть использован для организации системы обратной связи (ОС), контролирующей расстояние между зондом и образцом. На рис. 3 схематично показан общий принцип организации обратной связи СЗМ [5].

Система обратной связи поддерживает значение параметра Р постоянным, равным величине Р, задаваемой оператором. Если расстояние зонд-поверхность изменяется, то происходит изменение параметра Р. В системе ОС формируется разностный сигнал, пропорциональный величине ΔР = Р - Р, который усиливается до нужной величины и подается на исполнительный элемент ИЭ. Исполнительный элемент отрабатывает данный разностный сигнал, приближая зонд к поверхности или отодвигая его до тех пор, пока разностный сигнал не станет равным нулю. таким образом можно поддерживать расстояние зонд – образец с большой точностью. При перемещении зонда вдоль поверхности образца происходит изменение параметра взаимодействия Р, обусловленное рельефом поверхности. Система ОС отрабатывает эти изменения, так что при перемещении зонда в плоскости Х, Y сигнал на исполнительном элементе оказывается пропорциональным рельефу поверхности. Для получения СЗМ изображения осуществляют специальным образом организованный процесс сканирования образца. При сканировании зонд вначале движется над образцом вдоль определенной линии (строчная развертка), при этом величина сигнала на исполнительном элементе, пропорциональная рельефу поверхности, записывается в память компьютера. Затем зонд возвращается в исходную точку и переходит на следующую строку сканирования (кадровая развертка), и процесс повторяется вновь. Записанный таким образом при сканировании сигнал обратной связи обрабатывается компьютером, а затем СЗМ изображение рельефа поверхности строится с помощью средств компьютерной графики. Наряду с исследованием рельефа поверхности, зондовые микроскопы позволяют изучать различные свойства поверхности: механические, электрические, магнитные, оптические и другие [5].


3. Сканирующие элементы (сканеры) зондовых микроскопов

3.1 Сканирующие элементы

Для работы зондовых микроскопов необходимо контролировать рабочее расстояние зонд-образец и осуществлять перемещения зонда в плоскости образца с высокой точностью (на уровне долей ангстрема). Эта задача решается с помощью специальных манипуляторов – сканирующих элементов (сканеров). Сканирующие элементы зондовых микроскопов изготавливаются из пьезоэлектриков – материалов, обладающих пьезоэлектрическими свойствами. Пьезоэлектрики изменяют свои размеры во внешнем электрическом поле. Уравнение обратного пьезоэффекта для кристаллов записывается в виде:

u = d * E

где u – тензор деформации, E– компоненты электрического поля, d – компоненты тензора пьезоэлектрических коэффициентов. Вид тензора пьезоэлектрических коэффициентов определяется типом симметрии кристаллов [5].

В различных технических приложениях широкое распространение получили преобразователи из пьезокерамических материалов. Пьезокерамика представляет собой поляризованный поликристаллический материал, получаемый методами спекания порошков из кристаллических сегнетоэлектриков. Поляризация керамики производится следующим образом. Керамику нагревают выше температуры Кюри (для большинства пьезокерамик эта температура менее 300С), а затем медленно охлаждают в сильном (порядка 3 кВ/см) электрическом поле. После остывания пьезокерамика имеет наведенную поляризацию и приобретает способность изменять свои размеры (увеличивать или уменьшать в зависимости от взаимного направления вектора поляризации и вектора внешнего электрического поля).

В сканирующей зондовой микроскопии широкое распространение получили трубчатые пьезоэлементы (рис. 4). Они позволяют получать достаточно большие перемещения объектов при относительно небольших управляющих напряжениях. Трубчатые пьезоэлементы представляют собой полые тонкостенные цилиндры, изготовленные из пьезокерамических материалов. Обычно электроды в виде тонких слоев металла наносятся на внешнюю и внутреннюю поверхности трубки, а торцы трубки остаются непокрытыми.

Под действием разности потенциалов между внутренним и внешним электродами трубка изменяет свои продольные размеры. В этом случае продольная деформация под действием радиального электрического поля может быть записана в виде:

u =

где l – длина трубки в недеформируемом состоянии. Абсолютное удлинение пьезотрубки равно

Δх = d*

где h – толщина стенки пьезотрубки, V – разность потенциалов между внутренним и внешним электродами. Таким образом, при одном и том же напряжении V удлинение трубки будет тем больше, чем больше ее длина и чем меньше толщина ее стенки [5].

Соединение трех трубок в один узел позволяет организовать прецизионные перемещения зонда микроскопа в трех взаимно перпендикулярных направлениях. Такой сканирующий элемент называется триподом.

Недостатками такого сканера являются сложность изготовления и сильная асимметрия конструкции. На сегодняшний день в сканирующей зондовой микроскопии наиболее широко используются сканеры, изготовленные на основе одного трубчатого элемента. Общий вид трубчатого сканера и схема расположения электродов представлены на рис. 5. Материал трубки имеет радиальное направление вектора поляризации.

Внутренний электрод обычно сплошной. Внешний электрод сканера разделен по образующим цилиндра на четыре секции. При подаче противофазных напряжений на противоположные секции внешнего электрода (относительно внутреннего) происходит сокращение участка трубки в том месте, где направление поля совпадает с направлением поляризации, и удлинение там, где они направлены в противоположные стороны. Это приводит к изгибу трубки в соответствующем направлении. Таким образом осуществляется сканирование в плоскости Х, Y. Изменение потенциала внутреннего электрода относительно всех внешних секций приводит к удлинению или сокращению трубки по оси Z. Таким образом, можно организовать трехкоординатный сканер на базе одной пьезотрубки. Реальные сканирующие элементы имеют часто более сложную конструкцию, однако принципы их работы остаются теми же самыми [5].

Широкое распространение получили также сканеры на основе биморфных пьезоэлементов. Биморф представляет собой две пластины пьезоэлектрика, склеенные между собой таким образом, что вектора поляризации в каждой из них направлены в противоположные стороны (рис. 6). Если подать напряжение на электроды биморфа, как показано на рис. 6, то одна из пластин будет расширяться, а другая сжиматься, что приведет к изгибу всего элемента. В реальных конструкциях биморфных элементов создается разность потенциалов между внутренним общим и внешними электродами так, чтобы в одном элементе поле совпадало с направлением вектора поляризации, а в другом было направлено противоположно.

Изгиб биморфа под действием электрических полей положен в основу работы биморфных пьезосканеров. Объединяя три биморфных элемента в одной конструкции, можно реализовать трипод на биморфных элементах.

Если внешние электроды биморфного элемента разделить на четыре сектора, то можно организовать движение зонда по оси Z и в плоскости X, Y на одном биморфном элементе (рис. 7).

Действительно, подавая противофазные напряжения на противоположные пары секций внешних электродов, можно изгибать биморф так, сто зонд будет двигаться в плоскости X, Y (рис. 7 (а, б)). А изменяя потенциал внутреннего электрода относительно всех секций внешних электродов, можно прогибать биморф, перемещая зонд в направлении Z (рис. 7 (в, г)) [5].

3.2 Нелинейность пьезокерамики

Несмотря на ряд технологических преимуществ перед кристаллами, пьезокерамики обладают некоторыми недостатками, отрицательно влияющими на работу сканирующих элементов. Одним из таких недостатков является нелинейность пьезоэлектрических свойств. На рис. 8 в качестве примера приведена зависимость величины смещения пьезотрубки в направлении Z от величины приложенного поля. В общем случае (особенно при больших управляющих полях) пьезокерамики характеризуются нелинейной зависимостью деформаций от поля (или от управляющего напряжения).

Таким образом, деформация пьезокерамики является сложной функцией внешнего электрического поля:


u = u()

Для малых управляющих полей данная зависимость может быть представлена в следующем виде:

u = d* E+ α* E+…

где d и α - линейные и квадратичные модули пьезоэлектрического эффекта.

Типичные значения полей Е, при которых начинают сказываться нелинейные эффекты, составляют порядка 100 В/мм. Поэтому для корректной работы сканирующих элементов обычно используются управляющие поля в области линейности керамики (Е < Е) [5].

электронный микроскоп сканирующий зондовый

3.3 Крип пьезокерамики и гистерезис пьезокерамики

Другим недостатком пьезокерамики является так называемый крип (creep – ползучесть) – запаздывание реакции на изменение величины управляющего электрического поля.

Крип приводит к тому, что в СЗМ изображениях наблюдаются геометрические искажения, связанные с этим эффектом. Особенно сильно крип сказывается при выводе сканеров в заданную точку для проведения локальных измерений и на начальных этапах процесса сканирования. Для уменьшения влияния крипа керамики применяются временные задержки в указанных процессах, позволяющие частично скомпенсировать запаздывание сканера.

Еще одним недостатком пьезокерамик является неоднозначность зависимости удлинения от направления изменения электрического поля (гистерезис).

Это приводит к тому, что при одних и тех же управляющих напряжениях пьезокерамика оказывается в различных точках траектории в зависимости от направления движения. Для исключений искажений СЗМ изображений, обусловленных гистерезисом пьезокерамики, регистрацию информации при сканировании образцов производят только на одной из ветвей зависимости [5].


4. Устройства для прецизионных перемещений зонда и образца

4.1 Механические редукторы

Одной из важных технических проблем в сканирующей зондовой микроскопии является необходимость прецизионного перемещения зонда и образца с целью образования рабочего промежутка микроскопа и выбора исследуемого участка поверхности. Для решения этой проблемы применяются различные типы устройств, осуществляющих перемещение объектов с высокой точностью. Широкое распространение получили различные механические редукторы, в которых грубому перемещению исходного движителя соответствует тонкое перемещение смещаемого объекта. Способы редукции перемещений могут быть различными. Широко применяются рычажные устройства, в которых редукция величины перемещения осуществляется за счет разницы длины плеч рычагов. Схема рычажного редуктора приведена на рис. 9.

Механический рычаг позволяет получать редукцию перемещения с коэффициентом

ΔR =

Таким образом, чем больше отношение плеча L к плечу l, тем более точно можно контролировать процесс сближения зонда и образца.

Также в конструкциях микроскопов широко используются механические редукторы, в которых редукция перемещений достигается за счет разницы коэффициентов жесткости двух последовательно соединенных упругих элементов (рис. 10). Конструкция состоит из жесткого основания, пружины и упругой балки. Жесткости пружины k и упругой балки К подбирают таким образом, чтобы выполнялось условие: k < K [5].

Коэффициент редукции равен отношению коэффициентов жесткости упругих элементов:

ΔR =

Таким образом, чем больше отношение жесткости балки к жесткости пружины, тем точнее можно контролировать смещение рабочего элемента микроскопа.

4.2 Шаговые электродвигатели

Шаговые электродвигатели (ШЭД) представляют собой электромеханические устройства, которые преобразуют электрические импульсы в дискретные механические перемещения. Важным преимуществом шаговых электродвигателей является то, что они обеспечивают однозначную зависимость положения ротора от входных импульсов тока, так что угол поворота ротора определяется числом управляющих импульсов. В ШЭД вращающий момент создается магнитными потоками, создаваемыми полюсами статора и ротора, которые соответствующим образом ориентированы друг относительно друга.

Наиболее простую конструкцию имеют двигатели с постоянными магнитами. Они состоят из статора, который имеет обмотки, и ротора, содержащего постоянные магниты. На рис. 11 представлена упрощенная конструкция шагового электродвигателя.

Чередующиеся полюса ротора имеют прямолинейную форму и расположены параллельно оси двигателя. Показанный на рисунке двигатель имеет 3 пары полюсов ротора и 2 пары полюсов статора. Двигатель имеет 2 независимые обмотки, каждая из которых намотана на два противоположные полюса статора. показанный двигатель имеет величину шага 30 град. При включении тока в одной из обмоток ротор стремится занять такое положение, при котором разноименные полюса ротора и статора находятся друг напротив друга. Для осуществления непрерывного вращения нужно включать обмотки попеременно.

На практике применяются шаговые электродвигатели, имеющие более сложную конструкцию и обеспечивающие от 100 до 400 шагов на один оборот ротора. Если такой двигатель работает в паре с резьбовым соединением, то при шаге резьбы порядка 0,1 мм обеспечивается точность позиционирования объекта порядка 0,25 – 1 мкм. Для увеличения точности применяются дополнительные механические редукторы. Возможность электрического управления позволяет эффективно использовать ШЭД в автоматизированных системах сближения зонда и образца сканирующих зондовых микроскопов [5].

4.3 Шаговые пьезодвигатели

Требования хорошей изоляции приборов от внешних вибраций и необходимость работы зондовых микроскопов в условиях вакуума накладывают серьезные ограничения на применение чисто механических устройств для перемещений зонда и образца. В связи с этим широкое распространение в зондовых микроскопах получили устройства на основе пьезоэлектрических преобразователей, позволяющих осуществлять дистанционное управление перемещением объектов.

Одна из конструкций шагового инерционного пьезодвигателя приведена на рис. 12. Данное устройство содержит основание (1), на котором закреплена пьезоэлектрическая трубка (2). Трубка имеет электроды (3) на внешней и внутренней поверхностях. На конце трубки укреплена разрезная пружина (4), представляющая собой цилиндр с отдельными пружинящими лепестками. В пружине установлен держатель объекта (5) – достаточно массивный цилиндр с полированной поверхностью. Перемещаемый объект может крепиться к держателю с помощью пружины или накидной гайки, что позволяет устройству работать при любой ориентации в пространстве.

Устройство работает следующим образом. Для перемещения держателя объекта в направлении оси Z к электродам пьезотрубки прикладывается импульсное напряжение пилообразной формы (рис. 13).

На пологом фронте пилообразного напряжения трубка плавно удлиняется или сжимается в зависимости от полярности напряжения, и ее конец вместе с пружиной и держателем объекта смещается на расстояние:

Δl = d*

В момент сброса пилообразного напряжения трубка возвращается в исходное положение с ускорением a, имеющим вначале максимальную величину:

a = Δl*ω,

где ω – резонансная частота продольных колебаний трубки. При выполнении условия F < ma (m – масса держателя объекта, F - сила трения между держателем объекта и разрезной пружиной), держатель объекта, в силу своей инерционности, проскальзывает относительно разрезной пружины. В результате держатель объекта перемещается на некоторый шаг К Δl относительно исходного положения. Коэффициент К определяется соотношением масс деталей конструкции и жесткостью разрезной пружины. При смене полярности импульсов управляющего напряжения происходит изменение направления движения объекта. Таким образом, подавая пилообразные напряжения различной полярности на электроды пьезотрубки, можно перемещать объект в пространстве и производить сближение зонда и образца в сканирующем зондовом микроскопе [5].


5. Защита зондовых микроскопов от внешних воздействий

5.1 Защита от вибраций

Любая конструкция СЗМ представляет собой колебательную систему, имеющую целый набор собственных резонансных частот ω. Внешние механические воздействия на частотах , совпадающих с ω, вызывают явления резонанса в конструкции измерительных головок, что приводит к колебаниям зонда относительно образца и воспринимается как паразитный периодический шум, искажающий и размывающий СЗМ изображения поверхности образцов. С целью уменьшения влияния внешних вибраций измерительные головки изготавливают из массивных металлических деталей, имеющих высокие (более 100 кГц) частоты. Наименьшими резонансными частотами обладают сканирующие элементы зондовых микроскопов. В конструкциях современных микроскопов приходится идти на компромисс между величиной максимального поля обзора сканирующего элемента и его резонансной частотой. Типичными для сканеров являются резонансные частоты в диапазоне 10 - 100 кГц.

Для защиты приборов от внешних вибраций применяются различные типы виброизолирующих систем. Условно их можно разделить на пассивные и активные. Основная идея, заложенная в пассивные виброизолирующие системы, заключается в следующем. Амплитуда вынужденных колебаний механической системы быстро спадает при увеличении разницы между частотой возбуждающей силы и собственной резонансной частотой системы (типичная амплитудно-частотная характеристика (АЧХ) колебательной системы приведена на рис. 14).

Поэтому внешние воздействия с частотами ω > ω практически не оказывает заметного влияния на колебательную систему. Следовательно, если поместить измерительную головку зондового микроскопа на виброизолирующую платформу или на упругий подвес (рис. 15), то на корпус микроскопа пройдут лишь внешние колебания с частотами, близкими к резонансной частоте виброизолирующей системы. Поскольку собственные частоты головок СЗМ составляют 10 – 100 кГц, то, выбирая резонансную частоту виброизолирующей системы достаточно низкой (порядка 5 – 10 Гц), можно весьма эффективно защитить прибор от внешних вибраций. С целью гашения колебаний на собственных резонансных частотах в виброизолирующие системы вводят диссипативные элементы с вязким трением.

Таким образом, для обеспечения эффективной защиты необходимо, чтобы резонансная частота виброизолирующей системы была как можно меньше. Однако на практике реализовать очень низкие частоты трудно.

Для защиты головок СЗМ успешно применяются активные системы подавления внешних вибраций. Такие устройства представляют собой электромеханические системы с отрицательной обратной связью, которая обеспечивает стабильное положение виброизолирующей платформы в пространстве (рис. 16) [5].

5.2 Защита от акустических шумов

Еще одним источником вибрации элементов конструкции зондовых микроскопов являются акустические шумы различной природы.

Особенностью акустических помех является то, что акустические волны непосредственно воздействуют на элементы конструкции головок СЗМ, что приводит к колебаниям зонда относительно поверхности исследуемого образца. Для защиты СЗМ от акустических помех применяются различные защитные колпаки, позволяющие существенно снизить уровень акустической помехи в области рабочего промежутка микроскопа. Наиболее эффективной защитой от акустических помех является размещение измерительной головки зондового микроскопа в вакуумной камере (рис. 17) [6].

5.3 Стабилизация термодрейфа положения зонда над поверхностью

Одной из важных проблем СЗМ является задача стабилизации положения зонда над поверхностью исследуемого образца. Главным источником нестабильности положения зонда является изменение температуры окружающей среды или разогрев элементов конструкции зондового микроскопа во время его работы. Изменение температуры твердого тела приводит к возникновению термоупругих деформаций. Такие деформации весьма существенно влияют на работу зондовых микроскопов. Для уменьшения термодрейфа применяют термостатирование измерительных головок СЗМ или вводят в конструкцию головок термокомпенсирующие элементы. Идея термокомпенсации заключается в следующем. Любую конструкцию СЗМ можно представить в виде набора элементов с различными коэффициентами теплового расширения (рис. 18 (а)).

Для компенсации термодрейфа в конструкцию измерительных головок СЗМ вводят компенсирующие элементы, имеющие различные коэффициенты расширения, так, чтобы выполнялось условие равенства нулю суммы температурных расширений в различных плечах конструкции:

ΔL = ∑ ΔL = ΔT ∑α l  0

Наиболее простым способом уменьшения термодрейфа положения зонда по оси Z является введение в конструкцию СЗМ компенсирующих элементов из того же материала и с теми же характерными размерами, что и основные элементы конструкции (рис. 18 (б)). При изменении температуры такой конструкции смещение зонда в направлении Z будет минимальным. Для стабилизации положения зонда в плоскости X, Y измерительные головки микроскопов изготавливаются в виде аксиально-симметричных конструкций [5].


6. Формирование и обработка СЗМ изображений

6.1 Процесс сканирования

Процесс сканирования поверхности в сканирующем зондовом микроскопе имеет сходство с движением электронного луча по экрану в электроннолучевой трубке телевизора. Зонд движется вдоль линии (строки) сначала в прямом, а потом в обратном направлении (строчная развертка), а затем переходит на следующую строку (кадровая развертка) (рис. 19). Движение зонда осуществляется с помощью сканера небольшими шагами под действием пилообразных напряжений, формируемых цифро-аналоговыми преобразователями. Регистрация информации о рельефе поверхности производится, как правило, на прямом проходе.

Информация, полученная с помощью сканирующего зондового микроскопа, хранится в виде СЗМ кадра – двумерного массива целых чисел a (матрицы). Физический смысл данных чисел определяется той величиной, которая оцифровывалась в процессе сканирования. Каждому значению пары индексов ij соответствует определенная точка поверхности в пределах поля сканирования. Координаты точек поверхности вычисляются с помощью простого умножения соответствующего индекса на величину расстояния между точками, в которых производилась запись информации.

Как правило, СЗМ кадры представляют собой квадратные матрицы, имеющие размер 2 (в основном 256х256 и 512х512 элементов). Визуализация СЗМ кадров производится средствами компьютерной графики, в основном, в виде трехмерных (3D) и двумерных яркостных (2D) изображений. При 3D визуализации изображение поверхности строится в аксонометрической перспективе с помощью пикселей или линий. В дополнение к этому используются различные способы подсвечивания пикселей, соответствующих различной высоте рельефа поверхности. Наиболее эффективным способом раскраски 3D изображений является моделирование условий подсветки поверхности точечным источником, расположенным в некоторой точке пространства над поверхностью (рис. 20). При этом удается подчеркнуть мелкомасштабные неровности рельефа. Также средствами компьютерной обработки и графики реализуются масштабирование и вращение 3D СЗМ изображений. При 2D визуализации каждой точки поверхности ставится в соответствие цвет. Наиболее широко используются градиентные палитры, в которых раскраска изображения производится тоном определенного цвета в соответствии с высотой точки поверхности.

Локальные СЗМ измерения, как правило, сопряжены с регистрацией зависимостей исследуемых величин от различных параметров. Например, это зависимости величины электрического тока через контакт зонд-поверхность от приложенного напряжения, зависимости различных параметров силового взаимодействия зонда и поверхности от расстояния зонд-образец и др. Данная информация хранится в виде векторных массивов или в виде матриц 2 х N. Для их визуализации в программном обеспечении микроскопов предусматривается набор стандартных средств изображения графиков функций.

СЗМ изображения, наряду с полезной информацией, содержат также много побочной информации, искажающей данные о морфологии и свойствах поверхности. На рис. 21 схематически представлены возможные искажения в СЗМ изображениях поверхности, обусловленные неидеальностью аппаратуры и внешними паразитными воздействиями [5].

6.2 Методы построения и обработки изображений

При изучении свойств объектов методами сканирующей зондовой микроскопии основным результатом научного поиска являются, как правило, трехмерные изображения поверхности этих объектов. Адекватность интерпретации изображений зависит от квалификации специалиста. Вместе с тем, при обработке и построении изображений используется ряд традиционных приемов, о которых следует знать при анализе изображений. Сканирующий зондовый микроскоп появился в момент интенсивного развития компьютерной техники. Поэтому при записи трехмерных изображений в нем были использованы цифровые методы хранения информации, разработанные для компьютеров. Это привело к значительному удобству при анализе и обработке изображений, однако пришлось пожертвовать фотографическим качеством, присущим методам электронной микроскопии. Информация, полученная с помощью зондового микроскопа, в компьютере представляется в виде двумерной матрицы целых чисел. Каждое число в этой матрице, в зависимости от режима сканирования, может являться значением туннельного тока, или значением отклонения или значением какой-то более сложной функции. Если показать человеку эту матрицу, то никакого связного представления об исследуемой поверхности он получить не сможет. Итак, первая проблема - это преобразовать числа в вид, удобный для восприятия. Делается это следующим образом. Числа в исходной матрице лежат в некотором диапазоне, есть минимальное и максимальное значения. Этому диапазону целых чисел ставится в соответствие цветовая палитра. Таким образом, каждое значение матрицы отображается в точку определенного цвета на прямоугольном изображении. Строка и столбец, в которых находится это значение, становятся координатами точки. В результате мы получаем картину, на которой, например, высота поверхности передается цветом – как на географической карте. Но на карте обычно используются лишь десятки цветов, а на нашей картине их сотни и тысячи. Для удобства восприятия точки, близкие по высоте, должны передаваться сходными цветами. Может оказаться, и, как правило, так всегда и бывает, что диапазон исходных значений больше, чем число возможных цветов. В этом случае происходит потеря информации, и увеличение количества цветов не является выходом из положения, так как возможности человеческого глаза ограничены. Требуется дополнительная обработка информации, причем в зависимости от задач обработка должна быть разной. Кому-то необходимо увидеть всю картину целиком, а кто-то хочет рассмотреть детали. Для этого используются разнообразные методы [7].

6.3 Вычитание постоянного наклона

Изображения поверхности, получаемые с помощью зондовых микроскопов, как правило, имеют общий наклон. Это может быть обусловлено несколькими причинами. Во-первых, наклон может появляться вследствие неточной установки образца относительно зонда; во-вторых, он может быть связан с температурным дрейфом, который приводит к смещению зонда относительно образца; в-третьих, он может быть обусловлен нелинейностью перемещений пьезосканера. На отображение наклона тратится большой объем полезного пространства в СЗМ кадре, так что становятся не видны мелкие детали изображения. Для устранения данного недостатка производят операцию вычитания постоянного наклона. Для этого на первом этапе методом наименьших квадратов находится аппроксимирующая плоскость

Р(х,y), имеющая минимальные отклонения от рельефа поверхности Z = f(x,y) затем производится вычитание данной плоскости из СЗМ изображения. Вычитание целесообразно выполнять различными способами в зависимости от природы наклона.

Если наклон в СЗМ изображении обусловлен наклоном образца относительно образца зонда, то целесообразно произвести поворот плоскости на угол, соответствующий углу между нормалью к плоскости и осью Z; при этом координаты поверхности Z = f(x,y) преобразуются в соответствии с преобразованиями пространственного поворота. Однако при данном преобразовании возможно получение изображения поверхности в виде многозначной функции Z = f(x,y). Если наклон обусловлен термодрейфом, то процедура вычитания наклона сводится к вычитанию Z – координат плоскости из Z – координат СЗМ изображения:

Z’ = Z – P

Это позволяет сохранить правильные геометрические соотношения в плоскости X, Y между объектами в СЗМ изображении.

В результате получается массив с меньшим диапазоном значений, и мелкие детали изображения будут отражаться большим количеством цветов, становясь более заметными [5].

6.4 Устранение искажений, связанных с неидеальностью сканера

Неидеальность свойств сканера приводит к тому, что СЗМ изображение содержит ряд специфических искажений. Частично неидеальности сканера, такие как неравноправность прямого и обратного хода сканера (гистерезис), крип и нелинейность пьезокерамики компенсируются аппаратными средствами и выбором оптимальных режимов сканирования. Однако, несмотря на это, СЗМ изображения содержат искажения, которые трудно устранить на аппаратном уровне. В частности, поскольку движение сканера в плоскости образца влияет на положение зонда над поверхностью, СЗМ изображения представляют собой суперпозицию реального рельефа и некоторой поверхности второго (а часто и более высокого) порядка.

Для устранения искажения такого рода методом наименьших квадратов находится аппроксимирующая поверхность второго порядка Р(x,y), имеющая минимальные отклонения от исходной функции Z = f(x,y), и затем данная поверхность вычитается из исходного СЗМ изображения:


Z’ = Z – P

Еще один тип искажений связан с нелинейностью и неортогональностью перемещений сканера в плоскости X, Y. Это приводит к искажению геометрических пропорций в различных частях СЗМ изображения поверхности. Для устранения таких искажений производят процедуру коррекции СЗМ изображений с помощью файла коэффициентов коррекции, который создается при сканировании конкретным сканером тестовых структур с хорошо известным рельефом [5].

6.5 Фильтрация СЗМ изображений

Шумы аппаратуры (в основном, это шумы высокочувствительных входных усилителей), нестабильности контакта зонд-образец при сканировании, внешние акустические шумы и вибрации приводят к тому, что СЗМ изображения, наряду с полезной информацией, имеют шумовую составляющую. Частично шумы СЗМ изображений могут быть удалены программными средствами [6].

6.6 Медианная фильтрация

Хорошие результаты при удалении высокочастотных случайных помех в СЗМ кадрах дает медианная фильтрация. Это нелинейный метод обработки изображений, суть которого можно пояснить следующим образом. Выбирается рабочее окно фильтра, состоящее из n x n точек (для определенности возьмем окно 3 х 3, т.е. содержащее 9 точек (рис. 24)).

В процессе фильтрации это окно перемещается по кадру от точки к точке, и производится следующая процедура. Значения амплитуды СЗМ изображения в точках данного окна выстраиваются по возрастанию, и значение, стоящее в центре отсортированного ряда, заносится в центральную точку окна. Затем окно сдвигается в следующую точку, и процедура сортировки повторяется. Таким образом, мощные случайные выбросы и провалы при такой сортировке всегда оказываются на краю сортируемого массива и не войдут в итоговое (отфильтрованное) изображение. При такой обработке по краям кадра остаются нефильтрованные области, которые отбрасываются в конечном изображении [6].

6.7 Методы восстановления поверхности по ее СЗМ изображению

Одним из недостатков, присущих всем методам сканирующей зондовой микроскопии, является конечный размер рабочей части используемых зондов. Это приводит к существенному ухудшению пространственного разрешения микроскопов и значительным искажениям в СЗМ изображениях при сканировании поверхностей с неровностями рельефа, сравнимыми с характерными размерами рабочей части зонда.

Фактически получаемое в СЗМ изображение является «сверткой» зонда и исследуемой поверхности. Процесс «свертки» формы зонда с рельефом поверхности проиллюстрирован в одномерном случае на рис. 25.

Частично данную проблему позволяют решить развитые в последнее время методы восстановления СЗМ изображений, основанные на компьютерной обработке СЗМ данных с учетом конкретной формы зондов. Наиболее эффективным методом восстановления поверхности является метод численной деконволюции, использующий форму зонда, получаемую экспериментально при сканировании тестовых (с хорошо известным рельефом поверхности) структур [5].

Следует отметить, что полное восстановление поверхности образца возможно лишь при соблюдении двух условий: зонд в процессе сканирования коснулся всех точек поверхности, и в каждый момент зонд касался только одной точки поверхности. Если же зонд в процессе сканирования не может достигнуть некоторых участков поверхности (например, если образец имеет нависающие участки рельефа), то происходит лишь частичное восстановление рельефа. Причем, чем большего числа точек поверхности касался зонд при сканировании, тем достовернее можно реконструировать поверхность.

На практике СЗМ изображение и экспериментально определенная форма зонда представляет собой двумерные массивы дискретных значений, для которых производная является плохо определенной величиной. Поэтому вместо вычисления производной дискретных функций на практике при численной деконволюции СЗМ изображений используется условие минимальности расстояния между зондом и поверхностью при сканировании с постоянной средней высотой [5].

В этом случае за высоту рельефа поверхности в данной точке можно принять минимальное расстояние между точкой зонда и соответствующей точкой поверхности для данного положения зонда относительно поверхности. По своему физическому смыслу данное условие эквивалентно условию равенства производных, однако оно позволяет проводить поиск точек касания зонда с поверхностью более адекватным методом, что существенно сокращает время реконструирования рельефа.

Для калибровки и определения формы рабочей части зондов используются специальные тестовые структуры с известными параметрами рельефа поверхности. Виды наиболее распространенных тестовых структур и их характерные изображения, полученные с помощью атомно-силового микроскопа представлены на рис. 26 и рис. 27 [5].

Калибровочная решетка в виде острых шипов позволяет хорошо прописывать кончик зонда, в то время как прямоугольная решетка помогает восстановить форму боковой поверхности. Комбинируя результаты сканирования данных решеток, можно полностью восстанавливать форму рабочей части зондов [5].


7. Современные СЗМ

1) Сканирующий зондовый микроскоп SM-300

Предназначен для изучение морфологических особенностей и структуры порового пространства. SM-300 (рис. 28) снабжен встроенным микроскопом оптического позиционирования, который избавляет от необходимости бесконечного поиска области, представляющей интерес. Цветное оптическое изображение выборки, с небольшим увеличением, отображается на компьютерном мониторе. Перекрестие на оптическом изображении соответствует позиции электронного луча. Используя перекрестие, можно произвести быстрое позиционирование, чтобы задать область, представляющую интерес для анализа растровым

Рис. 28. СЗМ SM-300 электронным микроскопом. Блок оптического позиционирования оснащен отдельным компьютером, что обеспечивает его аппаратную независимость от сканирующего микроскопа.

ВОЗМОЖНОСТИ SM - 300

·  Гарантируемая разрешающая способность 4 нм

·  Уникальный оптический позиционирующий микроскоп (дополнительно)

·  Интуитивно понятное программное обеспечение Windows ®

·  Полностью компьютерное управление растровым микроскопом и построением изображений

·  Стандартный телевизионный вывод с обработкой цифрового сигнала

·  Компьютерное управление системой низкого вакуума (опция)

·  Все исследования, выполняются на одном положении оси аппликат (12 мм)

·  Элементный рентгеновский микроанализ в режимах низкого и высокого вакуума (дополнительно)

·  Возможность работы в условиях нормального комнатного освещения

·  Исследование непроводящих образцов без их предварительной подготовки

·  Разрешающая способность 5.5 нм в режиме низкого вакуума

·  Программное управление переключением режимов

·  Выбираемый диапазон вакуума камеры 1.3 – 260 Пa

·  Вывод изображения на экран компьютерного монитора

·  Последовательный V-обратно рассеянный датчик Робинсона

2) Сканирующий зондовый микроскоп высокого разрешения Supra50VP с системой микроанализа INCA Energy+Oxford.

Прибор (рис. 29) предназначен для проведения исследований во всех областях материаловедения, в области нано- и биотехнологий. Прибор позволяет работать с образцами большого размера, кроме того он поддерживает режим работы в условиях переменного давления для исследования непроводящих образцов без подготовки. Рис. 29. СЗМ Supra50VP

ПАРАМЕТРЫ:

v  ускоряющее напряжение 100 В – 30 кВ (катод с полевой эмиссией)

v  макс. увеличение до х 900000

v  сверхвысокое разрешение – до 1 нм (при 20 кВ)

v  вакуумный режим с переменным давлением от 2 до 133 Па

v  ускоряющее напряжение – от 0.1 до 30 кВ

v  моторизированный столик с пятью степенями свободы

v  разрешение EDX детектора 129 эВ на линии Ka(Mn), скорость счета до 100000 имп/с

3) LEO SUPRA 25 модернизированный микроскоп с «GEMINI» колонной и с полевой эмиссией (рис.30).

– Разработан для исследований в области наноанализа

– Можно подключать как EDX, так и WDX системы для микроанализа

– Разрешение 1.5 нм на 20 кВ, 2 нм на 1 кВ.


Заключение

За прошедшие годы применения зондовой микроскопии позволило достичь уникальных научных результатов в различных областях физики, химии и биологии.

Если первые сканирующие зондовые микроскопы были приборами-индикаторами для качественных исследований, то современный сканирующий зондовый микроскоп – это прибор, интегрирующий в себе до 50 различных методик исследования. Он способен осуществлять заданные перемещения в системе зонд-образец с точностью до 0,1%, рассчитывать форм-фактор зонда, производить прецизионные измерения достаточно больших размеров (до 200 мкм в плоскости сканирования и 15 – 20 мкм по высоте) и, при этом, обеспечивать субмолекулярное разрешение.

Сканирующие зондовые микроскопы превратились в один из наиболее востребованных на мировом рынке классов приборов для научных исследований. Постоянно создаются новые конструкции приборов, специализированные для различных приложений.

Динамичное развитие нанотехнологии требует все большего и большего расширения возможностей исследовательской техники. Высокотехнологичные компании во всем мире работают над созданием исследовательских и технологических нанокомплексов, объединяющих в себе целые группы аналитических методов, таких как: спектроскопия комбинационного рассеяния света, люминесцентная спектроскопия, рентгеновская спектроскопия для элементного анализа, методы оптической микроскопии высокого разрешения, электронной микроскопии, техники фокусированных ионных пучков. Системы приобретают мощные интеллектуальные возможности: способность распознавать и классифицировать изображения, выделять требуемые контрасты, наделяются возможностями по моделированию результатов, а вычислительные мощности обеспечиваются использованием суперкомпьютеров.

Разрабатываемая техника имеет могучие возможности, но конечной целью ее использования является получение научных результатов. Овладение возможностями этой техники само по себе является задачей высокой степени сложности, требующей подготовки высококлассных специалистов, способных эффективно пользоваться этими приборами и системами.


Список литературы

1.  Неволин В. К. Основы туннельно-зондовой технологии / В. К. Неволин, – М.: Наука, 1996, – 91 с.

2.  Кулаков Ю. А. Электронная микроскопия / Ю. А. Кулаков, – М.: Знание, 1981, – 64 с.

3.  Володин А.П. Сканирующая микроскопия / А. П. Володин, – М.: Наука, 1998, – 114 с.

4.  Сканирующая зондовая микроскопия биополимеров / Под редакцией И. В. Яминского, – М.: Научный мир, 1997, – 86 с.

5.  Миронов В. Основы сканирующей зондовой микроскопии / В. Миронов, – М.: Техносфера, 2004, – 143 с.

6.  Рыков С. А. Сканирующая зондовая микроскопия полупроводниковых материалов / С. А. Рыков, – СПБ: Наука, 2001, – 53 с.

7.  Быков В. А., Лазарев М. И. Сканирующая зондовая микроскопия для науки и промышленности / В. А. Быков, М. И. Лазарев // Электроника: наука, технология, бизнес, – 1997, – №5, – с. 7 – 14.


© 2012 Рефераты, курсовые и дипломные работы.