Главная Рефераты по рекламе Рефераты по физике Рефераты по философии Рефераты по финансам Рефераты по химии Рефераты по хозяйственному праву Рефераты по цифровым устройствам Рефераты по экологическому праву Рефераты по экономико-математическому моделированию Рефераты по экономической географии Рефераты по экономической теории Рефераты по этике Рефераты по юриспруденции Рефераты по языковедению Рефераты по юридическим наукам Рефераты по истории Рефераты по компьютерным наукам Рефераты по медицинским наукам Рефераты по финансовым наукам Рефераты по управленческим наукам Психология и педагогика Промышленность производство Биология и химия Языкознание филология Издательское дело и полиграфия Рефераты по краеведению и этнографии Рефераты по религии и мифологии Рефераты по медицине Рефераты по сексологии Рефераты по информатике программированию Краткое содержание произведений |
Доклад: Необратимость - свойство реальных процессов. Статистический характер энтропииДоклад: Необратимость - свойство реальных процессов. Статистический характер энтропии. Хаос, структура и порядок макросистем. Проблема тепловой смерти При соприкосновении тел процесс теплопередачи происходит самопроизвольно от горячего тела к холодному до тех пор, пока оба тела не будут иметь одинаковые температуры. Все наблюдали, как налитый в чашку горячий чай постепенно остывает, нагревая окружающий воздух. Но никто не видел, чтобы теплый чай в чашке вдруг закипел за счет охлаждения окружающего его воздуха. Процессы теплопередачи самопроизвольно осуществляют только в одном направлении, поэтому их называют необратимыми процессами. Всегда осуществляется теплопередача тепла от горячего тела к холодному, потому что равномерное распределение быстрых и медленных молекул в двух сопрягающихся телах является более вероятным, чем такое распределение, при котором в одном теле будут только «быстрые» молекулы, а в другом — только «медленные». Системы, состоящие из большого числа частиц, будучи предоставленные самим себе, само произвольно переходят из состояний менее вероятных в состояния более вероятные. Необратимость тепловых процессов имеет вероятностный характер. Самопроизвольный переход тела из равновесного состояния в неравновесное не невозможен, а лишь подавляюще маловероятен. В конечном результате необратимость тепловых процессов обусловливается колоссальностью числа молекул, из которых состоит тело. Молекулы газа стремятся к наиболее вероятному состоянию, т. е. состоянию с беспорядочным распределением молекул, при котором примерно одинаковое число молекул движется вверх и вниз, вправо и влево, при котором в каждом объеме находится примерно одинаковое число молекул, одинаковая доля быстрых и медленных молекул в верхней и нижней частях какого-либо сосуда. Любое отклонение от такого беспорядка, хаоса, т. е. от равномерного и беспорядочного перемешивания молекул по местам и скоростям, связано с уменьшением вероятности, или представляет собой менее вероятное событие. Напротив, явления, связанные с перемешиванием, с созданием хаоса из порядка, увеличивают вероятность состояния. Только при внешнем воздействии возможно рождение порядка из хаоса, при котором порядок вытесняет хаос. В качестве примеров, демонстрирующих порядок, можно привести созданные природой минералы, построенные человеком большие и малые сооружения или просто радующие глаз своеобразные фигуры. В середине 19 века активно обсуждалась проблема тепловой смерти Вселенной. Рассматриваю Вселенную как замкнутую систему и применяя к ней второе начало термодинамики, Р.Ю. Клаузиус свел его содержание к утверждению, что энтропия Вселенной должна достигнуть своего максимума. Это означает, что все формы движения со временем должны перейти в тепловые. Переход же теплоты от горячих тел к холодным приведет к тому, что температура всех тел во Вселенной сравняется, т.е. наступит полное тепловое равновесие и все процессы во Вселенной прекратятся – наступит тепловая смерть Вселенной. Ошибочность вывода о тепловой смерти заключается в том, что бессмысленно применять второе начало термодинамики к незамкнутым системам, например к такой безгранично развивающейся системе, как Вселенная. Источник электромагнитного поля связанный с материальными носителями этого свойства (например электронами и протонами), называется электрическим зарядом. Электрический заряд не зависит от системы отсчета. Носителями отрицательных зарядов в атоме являются электроны, носителями положительных зарядов — протоны, входящие в состав ядер, атомов. Сумма положительных и отрицательных зарядов в атоме равна нулю: заряды распределяются таким образом, что атом в целом является нейтральным. В природе существует два типа электрических зарядов -положительные и отрицательные. Одноименные заряды друг от друга отталкиваются, разноименные — притягиваются. Опытным путем установлено, что электрический заряд дискретен, т.е. заряд любого типа составляет целое кратное от элементарного электрического заряда е (е = 1,6 • 10-19 Кл). Электрон (те = 9,11 • 10-31кг) и протон mр=1,67 • 10-27кг) являются соответственно носителями элементарных отрицательного и положительного зарядов. Закон сохранения заряда: алгебраическая сумма электрических зарядов любой замкнутой системы (системы, не обменивающейся зарядами с внешними телами) остается неизменной, какие бы процессы ни происходили внутри данной системы. Электрический заряд — величина релятивистски инвариантная, т.е. не зависит от системы отсчета, а значит, не зависит от того, движется данный заряд или покоится. Единица электрического заряда - кулон (Кл) — это электрический заряд, проходящий через поперечное сечение проводника при силе тока 1 Ампер за 1 секунду. Носителями зарядов в различных средах могут быть электроны (например, в металлах), ионы — частицы молекул или атомов имеющие положительные и отрицательные заряды (например в электролитах и газах), и молионы — коллоидные частицы в жидкости имеющие заряды. По модулю любой заряд кратен заряду электрона или протона. Заряд протона равен по модулю заряду электрона. В пространстве, окружающем электрический заряд, существует силовое поле, называемое электрическим полем, то есть электрическое поле создается электрическим зарядом. Электрическое поле, создаваемое неподвижными электрическими зарядами, принято называть электростатическим. Опыт показывает , что подобно тому , как в пространстве , окружающем электрические заряды, возникает электромагнитное поле , так в пространстве, окружающем токи и постоянные магниты, возникает силовое поле называемое магнитным. Магнитное поле обнаруживается по силовому действию на внесенные в него проводники с током или постоянные магниты. В 60-х годах XIX в. английский физик Максвелл развил теорию Фарадея об электромагнитном поле и создал теорию электромагнитного поля. Это была первая теория поля. Она касается только электрического и магнитного полей и весьма успешно объясняет многие электромагнитные явления. Полезно напомнить некоторые основные идеи, лежащие в основе данной теории, и вытекающие из нее выводы. Из закона Фарадея(закон электро-магнитной индукции) следует, что любое изменение сцепленного с контуром магнитного потока приводит к возникновению электродвижущей силы (ЭДС) индукции и вследствие этого появляется индукционный ток. Следовательно, возникновение ЭДС электромагнитной индукции возможно и в неподвижном контуре, находящемся в переменном магнитном поле. Однако ЭДС в любой цепи возникает только тогда, когда в ней на носителей тока действуют сторонние силы, т. е. силы не электростатического происхождения. Поэтому возникает вопрос о природе сторонних сил в данном случае. Опыт показывает, что такие сторонние силы не связаны ни с тепловыми, ни с химическими процессами в контуре; их возникновение нельзя также объяснить силами Лоренца, так как они на неподвижные заряды не действуют. Дж.Максвелл высказал гипотезу, что всякое переменное магнитное поле возбуждает в окружающем пространстве электрическое поле, которое и является причиной возникновения индукционного тока в контуре. Согласно представлению Максвелла, контур, в котором появляется ЭДС, играет второстепенную роль, являясь своего рода лишь "прибором", обнаруживающим это поле. Электрическое поле, возбуждаемое магнитным полем, как и само магнитное поле, является вихревым. Согласно Максвеллу, если всякое переменное магнитное поле возбуждает в пространстве вихревое электрическое поле, то должно существовать обратное явление: всякое изменение электрического поля должно вызывать появление в окружающем пространстве вихревого магнитного поля. Для установления количественных соотношений между изменяющимся электрическим полем и вызываемым им магнитным полем Максвелл ввел в рассмотрение так называемый ток смещения, обладающий способностью создавать в окружающем пространстве магнитное поле. Ток смещения в вакууме не связан с движением зарядов, а обусловливается только изменением электрического поля во времени и вместе с тем возбуждает магнитное поле — в этом заключается принципиально новое утверждение Максвелла. Из уравнений Максвелла следует, что источниками электрического поля могут быть либо электрические заряды, либо изменяющиеся во времени магнитные поля, а магнитные поля могут возбуждаться либо движущимися электрическими зарядами (электрическими токами), либо переменными электрическими полями. Уравнения Максвелла не симметричны относительно электрического и магнитного полей. Это связано с тем, что в природе существуют электрические заряды, но нет зарядов магнитных. В стационарном случае, когда электрическое и магнитное поля не изменяются во времени, источниками электрического поля являются только электрические заряды, а источниками магнитного — только токи проводимости. В данном случае электрическое и магнитное поля независимы друг от друга, что и позволяет изучать отдельно постоянные электрические и магнитные поля. Уравнения Максвелла — наиболее общие уравнения для электрических и магнитных полей в покоящихся средах. В учении об электромагнетизме они играют такую же роль, как законы Ньютона в механике. Из уравнений Максвелла следует, что переменное магнитное поле всегда связано с порождаемым им электрическим полем, а переменное электрическое поле связано с порождаемым им магнитным, т. е. электрическое и магнитное поля неразрывно связаны друг с другом — они образуют единое электромагнитное поле. Долгое время считалось, что взаимодействие между телами может осуществляться непосредственно через пустое пространство, которое не принимает участия в передаче взаимодействия, и передача взаимодействия происходит мгновенно. Такое предположение составляет сущность концепции дальнодействия.. Основоположник концепции дальнодействия — французский математик физик и философ Рене Декарт. Многие ученые придерживались этой концепции вплоть до конца XIX в. Экспериментальные исследования электромагнитных явлений показали несоответствие концепции дальнодействия физическому опыту. Кроме того, она находится в противоречии с постулатом специальной теории относительности, в соответствии с которым скорость передачи взаимодействий тел ограничена и не должна превышать скорость света в вакууме. Было доказано, что взаимодействие электрически заряженных тел осуществляется не мгновенно и перемещение одной заряженной частицы приводит к изменению сил, действующих на другие частицы, не в тот же момент, а лишь спустя конечное время. Каждая электрически заряженная частица создает электромагнитное поле, действующее на другие заряженные частицы, т. е. взаимодействие передается через "посредника" — электромагнитное поле. Скорость распространения электромагнитного поля равна скорости света в пустоте — примерно 300 000 км/с. Это и составляет сущность новой концепции — концепции близкодействия, которая распространяется не только на электромагнитное, но и на другие виды взаимодействий. Основные характеристики колебательных и волновых процессов. Типы колебаний и волн. Резонанс. Источник колебания волн – колебательные системы, в них возбуждаются колебания и они их распространяют в окружающее пространство. Колебание – периодически повторяющиеся движения или изменения. V=1/T – частота. Амплитуда – макс.. отклонение от положения равновесия. Фаза колебаний – это некоторая хар-ка, которая определяет, с какого момента времени мы рассматриваем колебание. Колебания содержат в себе запас энергии (кинетической и потенциальной). Потенциальная энергия характеризует отклонение тела от положения равновесия или нейтрального положения. Классификация колебаний: по природе колебания механические (период перемещения тел, изменения его формы и объема) электрические (колебания зарядов или токов) упругие ! поверхностные (на поверхности раздела вода-воздух) ->гравитационные (т.к. вызваны притяжением Земли) по характеру колебаний любой природы гармонические (=идеальные) Не сущ. В природе. Затухающие (прекращ. С течением времени вынужденные (они происходят под действием периодической внешней силы) параметрические (периодически меняют св-ва колебательной системы) автоколебания (часы, человеческое сердце, работа радиопередатчика) линейные (относительно малой амплитуды) нелинейные (не сущ. общей теории о них) = реальные колебания Вынужденные колебания Резонанс – это явление сильного увеличения амплитуды вынужденных колебаний, когда частота внешней вынуждающей силой становится равной собственной частоте колебательной системы. При резонанса вынуждающая сила в течение всего периода колебания направлена в ту же сторону, что и вектор скорости колеблющегося тела. Поэтому она все время совершает положительную работу, увеличивая амплитуду колебаний тела. При несовпадении частоты вынуждающей силы и собственной частоты колебаний тела в течение одной части периода сила совершает положительную работу, увеличивая энергию тела, а в течение другой части периода та же сила совершает отрицательную работу, уменьшая энергию тела. При отсутствии трения и сопротивления воздуха амплитуда колебаний могла бы возрастать неограниченно, но в реальных условиях амплитуда установившихся колебаний определяется равенством потерь энергии и работы вынуждающей силы за период колебаний. Чем меньше будет трение и сопротивление, тем ярче будет выражен резонанс. Волны – это колебания, которые распространяются в пространстве. Они бывают бегущими и стоячими. Передаются от одной точки к другой. Длина волны – это расстояние, на которое распростран. Колебание за ее 1 период, зависит от характера самих колебаний и от св-в среды. Скорость распространения волны бывает фазовая и групповая (та скоторость, с которой передается энергия с волной от одной точки к другой. Поляризация волн – это соотношение между двумя направлениями: в котором происходят колебания в волне и направлением распространения волны. Продольные волны – эти два направления совпадают (звуковые). Поперечные волны – колебания происходят перпендикулярно направлению распространения волны (свет). Смешанные волны = продольные и поперечные. Волновое поле – это обл. пространства, в котором распространяются волны. Фазовая (волновая) поверхность – это поверхность, на которой колеб. движения волны имеют одну и ту же фазу. Расстояние между соседними волновыми поверхностями, у которых фазы различаются на 2п - длина волны. Интерференция волн (когерентные) – это результат положения или суперпозиции когерентных волн (у них разность фаз остается const с течением времени, их условие – одинаковость частот). При подготовке этой работы были использованы материалы с сайта http://www.studentu.ru |
|
|