рефераты
Главная

Рефераты по рекламе

Рефераты по физике

Рефераты по философии

Рефераты по финансам

Рефераты по химии

Рефераты по хозяйственному праву

Рефераты по цифровым устройствам

Рефераты по экологическому праву

Рефераты по экономико-математическому моделированию

Рефераты по экономической географии

Рефераты по экономической теории

Рефераты по этике

Рефераты по юриспруденции

Рефераты по языковедению

Рефераты по юридическим наукам

Рефераты по истории

Рефераты по компьютерным наукам

Рефераты по медицинским наукам

Рефераты по финансовым наукам

Рефераты по управленческим наукам

Психология и педагогика

Промышленность производство

Биология и химия

Языкознание филология

Издательское дело и полиграфия

Рефераты по краеведению и этнографии

Рефераты по религии и мифологии

Рефераты по медицине

Рефераты по сексологии

Рефераты по информатике программированию

Краткое содержание произведений

Реферат: Режимы работы асинхронных двигателей

Реферат: Режимы работы асинхронных двигателей

Реферат выполнил ст-т 6-ого куса, 12 гр.,  спец. 1801,  Полукаров А.Н.

Самарский Государственный Технический Университет

Кафедра «Электромеханика и нетрадиционная энергетика»

Самара, 2006

1. Введение.

Общие сведения об асинхронных машинах.

Асинхронной машиной называется двухобмоточная электрическая машина переменного тока, у которой только одна обмотка (первичная) получает питание от электрической сети с постоянной частотой ω1, а вторая обмотка (вторичная) замыкается накоротко или на электрические сопротивления. Токи во вторичной обмотке появляются в результате электромагнитной индукции. Их частота ω2 является функцией угловой скорости ротора Ω, которая в свою очередь зависит от вращающего момента, приложенного к валу.

Наибольшее распространение получили асинхронные машины с трехфазной симметричной разноименнополюсной обмоткой на статоре, питаемой от сети переменного тока, и с трехфазной или многофазной симметричной разноименнополюсной обмоткой на роторе.

Машины такого исполнения называют просто «асинхронными машинами», в то время как асинхронные машины иных исполнений относятся к «специальным асинхронным машинам».

Асинхронные машины используются в основном как двигатели; в качестве генераторов они применяются крайне редко.

Асинхронный двигатель является наиболее распространенным типом двигателя переменного тока.

Разноименнополюсная обмотка ротора асинхронного двигателя может быть короткозамкнутой (беличья клетка) или фазной (присоединяется к контактным кольцам). Наибольшее распространение имеют дешевые в производстве и надежные в эксплуатации двигатели с короткозамкнутой обмоткой на роторе, или короткозамкнутые двигатели. Эти двигатели обладают жесткой механической характеристикой (при изменении нагрузки от холостого хода до номинальной их частота вращения уменьшается всего на 2—5%).

Двигатели с короткозамкнутой обмоткой на роторе обладают также довольно высоким начальным пусковым вращающим моментом. Их основные недостатки: трудность осуществления плавного регулирования частоты вращения в широких пределах; потребление больших токов из сети при пуске (в 5—7 раз превышающих поминальный ток).

Двигатели с фазной обмоткой на роторе или двигатели с контактными кольцами избавлены от этих недостатков ценой усложнения конструкции ротора, что приводит к их заметному удорожанию по сравнению с короткозамкнутыми двигателями (примерно в 1,5 раза). Поэтому двигатели с контактными кольцами на роторе находят применение лишь при тяжелых условиях пуска, а также при необходимости  плавного регулирования частоты вращения.

Двигатели с контактными кольцами иногда применяют в каскаде с другими машинами. Каскадные соединения асинхронной машины позволяют плавно регулировать частоту вращения в широком диапазоне при высоком коэффициенте мощности, однако из-за значительной стоимости не имеют сколько-нибудь заметного распространения.

В двигателях с контактными кольцами выводные концы обмотки ротора, фазы которой соединяются обычно в звезду, присоединяются к трем контактным кольцам. С помощью щеток, соприкасающихся с кольцами, в цепь обмотки ротора можно вводить добавочное сопротивление или дополнительную ЭДС для изменения пусковых или рабочих свойств машины; щетки позволяют также замкнуть обмотку накоротко.

В большинстве случаев добавочное сопротивление вводится в обмотку ротора только при пуске двигателя, что приводит к увеличению пускового момента и уменьшению пусковых токов и облегчает пуск двигателя. При работе асинхронного двигателя пусковой реостат должен быть полностью выведен, а обмотка ротора замкнута накоротко. Иногда асинхронные двигатели снабжаются специальным устройством, которое позволяет после завершения пуска замкнуть между собой контактные кольца и приподнять щетки. В таких двигателях удается повысить КПД за счет исключения потерь от трения колец о щетки и электрических потерь в переходном контакте щеток.

Выпускаемые заводами асинхронные двигатели предназначаются для работы в определенных условиях с определенными техническими данными, называемыми номинальными. К числу номинальных данных асинхронных двигателей, которые указываются в заводской табличке машины, укрепленной на ее корпусе, относятся:

механическая мощность, развиваемая двигателем, Рн = P2н;

частота сети f1;

линейное напряжение статора U1лн

линейный ток статора I1лн;

частота вращения ротора nн;

коэффициент мощности cos φ1н;

коэффициент полезного действия ηн.

Если у трехфазной обмотки статора выведены начала и концы фаз и она может быть включена в звезду или треугольник, то ука-зываются линейные напряжения и токи для каждого из возможных соединений (Υ/Δ).

Кроме того, для двигателя с контактными кольцами приводится напряжение на разомкнутых кольцах при неподвижном роторе и линейный ток ротора в номинальном режиме.

Номинальные данные асинхронных двигателей варьируются в очень широких пределах. Номинальная мощность — от долей ватта до десятков тысяч киловатт. Номинальная синхронная частота вращения п1н = 60 f1/р при частоте сети 50 Гц от 3000 до 500 об/мин и менее в особых случаях; при повышенных частотах — до 100 000 об/мин и более (номинальная частота вращения ротора обычно на 2—5% меньше синхронной; в микродвигателях — на 5—20%). Номинальное напряжение от 24 В до 10 кВ (большие значения при больших мощностях).

Номинальный КПД асинхронных двигателей возрастает с ростом их мощности и частоты вращения; при мощности более 0,5 кВт он составляет 0,65—0,95, в микродвигателях 0,2—0,65.

Номинальный коэффициент мощности асинхронных двигателей, равный отношению активной мощности к полной мощности, потребляемой из сети,

также возрастает с ростом мощности и частоты вращения двигателей; при мощности более 1 кВт он составляет 0,7—0,9; в микродвигателях 0,3—0,7.

Общие сведения о режимах работы асинхронного двигателя.

В двигательном режиме разница частот вращения ротора и поля статора в большинстве случаев невелика и составляет лишь несколько процентов. Поэтому частоту вращения ротора оценивают не в абсолютных единицах (об/мин или об/с), а в относительных, вводя понятие скольжения:

s = (пс - п)/пс,

где пс — частота вращения поля (синхронная частота вращения); п — частота вращения ротора.

Скольжение выражается либо в относительных единицах (s = = 0,02; 0,025 и т. п.), либо в процентах (s - 2 %; 2,5 % и т. п.).

Частота тока и ЭДС, наводимая в проводниках обмотки ротора, зависят от частоты тока и ЭДС обмотки статора и от скольжения:

f2 - f1s;  Е'2 - E1s,

где Е1— ЭДС обмотки статора; Е'2 — ЭДС обмотки ротора, приведенная к числу витков обмотки статора.

Рис. 2.1. Механическая характеристика  асинхронной машины

Теоретически асинхронная машина может работать в диапазоне изменения скольжения s = -∞...+∞ (рис. 2.1), но не при s = 0, так как в этом случае п - пс и проводники обмотки ротора неподвижны относительно поля статора, ЭДС и ток в обмотке равны нулю и момент отсутствует. В зависимости от практически возможных скольжений различают несколько режимов работы асинхронных машин (рис. 2.1): генераторный режим при s < 0, двигательный при 0 < s < 1, трансформаторный при s = 1 и тормозной при s > 1. В генераторном режиме ротор машины вращается в ту же сторону, что и поле статора, но с большей частотой. В двигательном — направления вращения поля статора и ротора совпадают, но ротор вращается медленнее поля статора: п = пс(1 - s). В трансформаторном режиме ротор машины неподвижен и обмотки ротора и статора не перемещаются относительно друг друга. Асинхронная машина в таком режиме представляет собой трансформатор и отличается от него расположением первичной и вторичной обмоток (обмотки статора и ротора) и наличием воздушного зазора в магнитопроводе. В тормозном режиме ротор вращается, но направление его вращения противоположно направлению поля статора и машина создает момент, противоположный моменту, действующему на вал. Подавляющее большинство асинхронных машин используют в качестве двигателей, и лишь очень небольшое количество — в генераторном и трансформаторном режимах, в тормозном режиме — кратковременно.

Для оценки механической характеристики асинхронного двигателя моменты, развиваемые двигателем при различных скольжениях, обычно выражают не в абсолютных, а в относительных единицах, т. е. указывают кратность по отношению к номинальному моменту: М* = M/Мном. Зависимость М* = f(s) асинхронного двигателя (рис. 2.2) имеет несколько характерных точек, соответствующих пусковому М*п, минимальному М*min, максимальному М*max и номинальному М*ном моментам.

Пусковой момент М*п характеризует начальный момент, развиваемый двигателем непосредственно при включении его в сеть при неподвижном роторе (s - 1). После трогания двигателя с места его момент несколько уменьшается по сравнению с пусковым (см. рис. 2.2). Обычно М*min на 10...15 % меньше М*п. Большинство двигателей проектируют так, чтобы их М*min был больше М*ном , так как они могут достигнуть номинальной скорости лишь при условии, что момент сопротивления, приложенный к валу, будет меньше, чем М*min .

Максимальный момент М*max  характеризует перегрузочную способность двигателя. Если момент сопротивления превышает М*max, двигатель останавливается. Поэтому М*max называют также критическим, а скольжение, при котором момент достигает максимума, — критическим скольжением sкp. Обычно sкр не превышает 0,1...0,15; в двигателях с повышенным скольжением (крановых, металлургических и т. п.) sкp может быть значительно большим.

В диапазоне 0 < s < sкр характеристика М - f(s) имеет устойчивый характер. Она является рабочей частью механической характеристики двигателя. При скольжениях s > sкр двигатель в нормальных условиях работать не может. Эта часть характеристики определяет пусковые свойства двигателя от момента пуска до выхода на рабочую часть характеристики.

Рис. 2.2. Зависимость тока и момента асинхронного двигателя от скольжения

Трансформаторный режим, т. е. режим, когда обмотка статора подключена к сети, а ротор неподвижен, называют также режимом короткого замыкания двигателя. При s = 1 ток двигателя в несколько раз превышает номинальный, а охлаждение много хуже, чем при номинальном режиме. Поэтому в режиме короткого замыкания асинхронный двигатель, не рассчитанный для работы при скольжениях, близких к единице, может находиться лишь в течение нескольких секунд.

Режим короткого замыкания возникает при каждом пуске двигателя, однако в этом случае он кратковременен. Несколько пусков двигателя с короткозамкнутым ротором подряд или через короткие промежутки времени могут привести к превышению допустимой температуры его обмоток и к выходу двигателя из строя.

3. Аналитическое и графическое определение режимов работы асинхронной машины

Электромеханическое преобразование энергии может происходить в асинхронной машине в следующих трех режимах:

в режиме двигателя 0 < s < l, Ω1 > Ω > 0;

в режиме генератора s < 0, Ω > Ω1;

в режиме тормоза s > 1, Ω < 0.

Кроме того, важны еще два характерных режима работы, в которых электромеханическое преобразование энергии не происходит: режим идеального холостого хода (s = 0, Ω = Ω1) и режим короткого замыкания (s = 1, Ω = 0).

В режиме двигателя (область Д на рис. 3.2) под воздействием электромагнитного момента Μ > 0, направленного в сторону поля, ротор машины вращается в сторону поля со скоростью, меньшей, чем скорость поля (Ω1 > Ω > 0, 0 < s < 1). В этом режиме

Ρэм = ΜΩ1 =  > 0;    Ρмех = ΜΩ = Ρэ2  > 0.

Электрическая мощность Р1 = Рэм + Рм + Рэ1 > 0 преобразуется в механическую мощность Р2 = Рмех — Ρд — ΡΊ > 0, передаваемую через вал приводимой в движение машины.

Энергетические процессы в режиме двигателя иллюстрируются рис. 3.1, а, на котором направление активной составляющей тока ротора i2а совпадает с индуктированной в роторе ЭДС. Направление электромагнитного момента Μ определяется электромагнитной силой Bmi2a, действующей на ток i2a .

Полезная механическая мощность Р2 оказывается меньше потребляемой из сети мощности на потери ΣΡ:

Ρ2 = Ρ1-ΣΡ = Ρ1 -(Ρэ1 + Ρм+Ρэ2 + Ρд + Ρт),

И КПД двигателя выражается формулой:

η =  = 1- = f(s)

В режиме генератора (область Г на рис. 3.2) под воздействием внешнего   момента   Мв > 0,   направленного   в    сторону     поля (рис. 3.1, б), ротор машины вращается со скоростью, превышающей скорость поля (Ω > Ω1, s < 0). В этом режиме в связи с изменением направления вращения поля (Ω^) относительно ротора активная составляющая тока ротора г'2а изменяет свое направление иа обратное (по сравнению с двигательным режимом). Поэтому электромагнитный момент Μ = Bmi2a, уравновешивающий внешний момент, направлен против поля и считается отрицательным (М < 0), мощности Рэ„ и Ртх также отрицательны:

Ρэм = ΜΩ1 =  < 0;    Ρмех = ΜΩ = Ρэ2  < 0.

Рис. 3.1. Режимы работы асинхронной машины.

а — двигательный;

б — генераторный;

в — тормоза;

г — трансформатора (или короткого замыкания).

Направление преобразования энергии изменяется на обратное: механическая мощность Рг, подведенная к валу машины, преобразуется в электрическую мощность Plt поступающую в сеть. Поскольку мощность потерь всегда положительна (в любом режиме работы эти мощности превращаются в тепло), механическая мощность:

Ρмех = Ρэм - Ρэ2 < 0   при   s < 0

по абсолютному значению больше, чем электромагнитная (рис. 3.2):

|Ρмех| = | Ρэм | + Ρэ2

Рис. 3.2. Электромеханические характеристики асинхронной машины (в относительных единицах при 1/х = 1; /0 = 0,364; cos <р0 = 0,185; Хг = Х'2 = 0,125; Кг = 0,0375; R's = 0,0425).

По той же причине потребляемая механическая мощность

P2 = P1 - ΣΡ  < 0

по абсолютному значению на потери больше электрической мощности, отдаваемой в сеть:

|Ρ2| = | Ρ1 | + ΣΡ,

и КПД генератора

η =  = 1-.

В режиме тормоза (область Т на рис. 3.2) под воздействием внешнего момента Мв < 0, направленного против вращения поля (рис. 3.1, в), ротор машины вращается в сторону, противоположную полю (Ω<0, s =  >1). В этом режиме электромагнитный момент М, уравновешивающий внешний момент, как и в режиме двигателя (направление вращения поля Ω.5 относительно ротора остается таким же, как в режиме двигателя), направлен в сторону поля и считается положительным (М > 0). Однако, поскольку Ω < 0, механическая мощность оказывается отрицательной:

Ρмех = ΜΩ = Ρэ2  < 0

Это означает, что она подводится к асинхронной машине. Электромагнитная мощность в этом режиме положительна:

Ρэм = ΜΩ1 =  > 0

Это означает, что она поступает из сети в машину.

Подведенные к ротору машины со стороны сети |Ρэм| и вала |Ρмех|  мощности превращаются в электрические потери Рэ2 в сопротивлении ротора R'2 (рис. 3.2):

|Ρмех| + | Ρэм | = Ρэ2  + Ρэ2 = Ρэ2 = m1 R'2(I '2)2 .

Асинхронная машина в этом режиме может быть использована для притормаживания опускаемого подъемным краном груза. При этом мощность | Ρмех | = | ΜΩ | поступает в ротор машины (см. рис. 3.1).

В режиме идеального холостого хода внешний вращающий момент Μв, момент трения Μт = Ρт/Ω и момент, связанный с добавочными потерями, Мд = Ρд/Ω равны нулю. Ротор вращается со скоростью поля (Ω = Ω1, s = 0) и не развивает полезной механической мощности (М = 0, Рмех = ΜΩ = 0).

В режиме идеального холостого хода внешний момент, приложенный к валу машины, равен нулю (Мв = 0). Считается также, что отсутствует момент от трения вращающихся частей. Ротор машины вращается с той же угловой скоростью, что и вращающееся поле (Ω = Ω1), скольжение равно нулю (s = 0); ЭДС и токи в обмотке ротора не индуктируются (I2=0), и электромагнитный момент, уравновешивающий внешний момент и момент сил трения, равен нулю (М = 0).

Режим холостого хода асинхронной машины аналогичен режиму холостого хода трансформатора. В асинхронной машине и в трансформаторе ток в этом режиме имеется только в первичной обмотке I1 ≠ 0, а во вторичной — отсутствует (I2 = 0); в машине и в трансформаторе магнитное поле образуется в этом режиме только первичным током, что позволяет называть ток холостого хода намагничивающим током (I1 = I0). В отличие от трансформатора система токов I0 в фазах многофазной обмотки статора образует вращающееся магнитное поле.

По аналогии с трансформатором уравнение напряжений необходимо составить при холостом ходе только для фазы обмотки статора, являющейся первичной обмоткой:

,

где   — ЭДС, индуктированная в фазе вращающимся магнитным полем с потоком Фга;

   —  фазное напряжение первичной сети;

R1, Х1  — активное и индуктивное сопротивления рассеяния фазы первичной обмотки (см. далее).

В силу малости падений напряжений X1I0 и R1I0 напряжение  почти полностью уравновешивается ЭДС   т. е.  = -.

В режиме холостого   хода R'мех = R'2 = ∞,    ток   R'2 = 0 и схема  замещения содержит только одну ветвь Z1 + Z0 (Т-образная и Г-образная схемы не отличаются друг от друга).

В режиме короткого замыкания под действием внешнего момента Μ в, уравновешивающего электромагнитный момент М, ротор удерживается в неподвижном   состоянии (Ω = 0, s =  = 1) и не совершает полезной механической работы (Рмех = Μ Ω = 0).

Направление тока i2a и электромагнитного момента Μ остается таким же, как в режиме двигателя, и Μ > 0 (см. рис. 3.1, г). Электромагнитная мощность Рэм = ΜΩ1 > 0 — она поступает в ротор из статора и превращается в электрические потери (Рэм = = Рэ2). В этом режиме асинхронная машина работает как коротко-замкнутый со вторичной стороны трансформатор, отличаясь от него только тем, что в ней существует вращающееся поле взаимной индукции вместо пульсирующего поля в трансформаторе.

В режиме короткого замыкания R'мех = R'2 = 0 и сопротивление схемы замещения по рис. 42-3 определяется параллельно включенными сопротивлениями Z1 + Z0 и Z1 + Z'2. Имея в виду, что |Z1 + Z'2| « |Z1 + Z0|, можно отбросить ветвь Z1 + Z0 и считать сопротивление схемы замещения при коротком замыкании равным

Zк = Z1 + Z'2 = Rк + jXк     (43-3)

где

Rк= R1+ R'2

Если к неподвижному ротору асинхронной машины подключить симметричную систему дополнительных сопротивлений R2д + jХ2д, то она будет работать как трансформатор, преобразующий электрическую энергию, поступающую из первичной сети, в электрическую энергию с другими параметрами, потребляемую дополнительными сопротивлениями R2д + jХ2д. Поэтому режим при s = 1 называется также режимом трансформатора.

Изменить режим работы асинхронной машины или скольжение машины в данном режиме (при U1 = const и f1 = const) можно только путем изменения внешнего момента Мв, приложенного к валу машины. При Мв = 0 ротор вращается со скоростью поля (Ω = Ω1, s = 0) и машина не совершает полезного преобразования энергии. При воздействии на вал ротора внешнего момента Мв, направленного против направления вращения поля, скорость ротора уменьшается до тех пор, пока не появится электромагнитный момент Μ = f(s),  который  уравновесит момент Мв. Машина переходит в режим   двигателя s =  > 0.    Наоборот,   при   воздействии внешнего момента Мв направленного по вращению поля, скорость ротора делается большей, чем скорость поля (Ω > Ω1), и машина переходит в режим генератора (s=<0).

Наконец, к режиму тормоза можно перейти из режима двигателя, изменяя внешний момент Мв таким образом, чтобы ротор сначала остановился, а затем пришел во вращение в противоположную сторону (по отношению к полю).

Список литературы

Иванов-Смоленский А. В. Электрические машины: Учебник для вузов. – М.: Энергия, 1980. – 928 с., ил.

Вольдек А. И. Электричесие машины. Учебник для студентов высших учебн. Заведений. Л., «Энергия», 1974.

Проектирование электрических машин: Учеб. Для вузов / Под ред. И. П. Копылова. М.: Высш. Шк., 2002. – 757 с.: ил.


© 2012 Рефераты, курсовые и дипломные работы.