![]() |
|||
Главная Рефераты по рекламе Рефераты по физике Рефераты по философии Рефераты по финансам Рефераты по химии Рефераты по хозяйственному праву Рефераты по цифровым устройствам Рефераты по экологическому праву Рефераты по экономико-математическому моделированию Рефераты по экономической географии Рефераты по экономической теории Рефераты по этике Рефераты по юриспруденции Рефераты по языковедению Рефераты по юридическим наукам Рефераты по истории Рефераты по компьютерным наукам Рефераты по медицинским наукам Рефераты по финансовым наукам Рефераты по управленческим наукам Психология и педагогика Промышленность производство Биология и химия Языкознание филология Издательское дело и полиграфия Рефераты по краеведению и этнографии Рефераты по религии и мифологии Рефераты по медицине Рефераты по сексологии Рефераты по информатике программированию Краткое содержание произведений |
Курсовая работа: Спектр оператора. Применение нестандартного анализа для исследования резольвенты и спектра оператораКурсовая работа: Спектр оператора. Применение нестандартного анализа для исследования резольвенты и спектра оператораВыпускная квалификационная работа Выполнила студентка V курса математического факультета Овчинникова Елена Александровна Вятский государственный гуманитарный университет Киров 2005 Введение Раздел математической логики – теория нестандартных моделей математического анализа относительно молод и недостаточно освещён в математической литературе. Поэтому мне интересно было осветить его элементы в своей квалификационной работе. Целью работы является освещение теории стандартных операторов, исследование резольвенты и спектра оператора с помощью стандартных методов математического анализа, а затем, после введения основных понятий и предложений нестандартного анализа, с помощью нестандартных методов. В ходе работы были описаны резольвентное и спектральное множества операторов, а так же приведены их примеры на стандартных и нестандартных операторах. История нестандартного анализа Возраст нестандартного анализа колеблется от четырёх десятков до трех сотен лет. Четыре десятка получается, если считать, что нестандартный анализ зародился осенью 1960 года, когда его основатель, Абрахам Робинсон, сделал на одном из семинаров Принстонского университета доклад о возможности применения методов математической логики к обоснованию математического анализа. Триста лет получается, если считать началом нестандартного анализа появление символов бесконечно малых dx и dy в трактате Лейбница. Как и всякое другое научное направление, нестандартный анализ возник не на пустом месте. Основные его источники: во-первых, это идущая от классиков математического анализа традиция употребления бесконечно больших и бесконечно малых – традиция, сохранившаяся до нашего времени. Второй, менее очевидный источник – нестандартные модели аксиоматических систем, появившиеся в математической логике. К 1960 году методы построения нестандартных моделей были давно разработаны и хорошо известны специалистам по теории моделей, одним из основателей которой был А. Робинсон. Оставалось лишь соединить их с идеями о применении бесконечно малых величин в анализе, чтобы положить начало развитию нестандартного анализа. В 1961 г. появилась статья А. Робинсона “Нестандартный анализ” в Трудах Нидерландской академии наук. В статье были намечены как основные положения нестандартного анализа, так и некоторые его приложения. В течение последующих восьми лет вышли в свет три монографии, излагающие нестандартную теорию: в 1962 г. - книга В.А. Дж. Люксембурга “Нестандартный анализ. Лекции о робинсоновой теории бесконечно малых и бесконечно больших чисел”, в 1966 г. - книга самого А. Робинсона “Нестандартный анализ” и в 1969 г. - книга М. Маховера и Дж. Хиршфелда “Лекции о нестандартном анализе”. Наибольший резонанс вызвала книга Робинсона. В девяти первых главах этой монографии содержалось как построение необходимого логико-математического аппарата, так и многочисленные приложения – к дифференциальному и интегральному исчислению, к общей топологии, к теории функций комплексного переменного, к теории групп Ли, к гидродинамике и теории упругости. В 1966 г. появилась статья А.Р.
Бернстейна и А. Робинсона, в которой впервые методами нестандартного анализа
было получено решение проблемы инвариантных пространств для полиномиально
компактных операторов. В очерке П.Р. Халмоша “взгляд в гильбертово
пространство” в качестве проблемы фигурирует поставленная К.Т. Смитом задача о
существовании инвариантного подпространства для таких операторов Т в
гильбертовом пространстве Приложения нестандартного анализа внутри математики охватывают обширную область от топологии до теории дифференциальных уравнений, теории мер и вероятностей. Что касается внематематических приложений, то среди них мы встречаем даже приложения к математической экономике. Многообещающим выглядит использование нестандартного гильбертова пространства для построения квантовой механики. А в статистической механике становится возможным рассматривать системы из бесконечного числа частиц. Помимо применений к различным областям математики, исследования в области нестандартного анализа включают в себя и исследование самих нестандартных структур. В 1976 г. вышли сразу три книги по нестандартному анализу: “Элементарный анализ” и “Основания исчисления бесконечно малых” Г. Дж. Кейслера и “Введение в теорию бесконечно малых” К. Д. Стройана и В. А. Дж. Люксембурга. Быть может, наибольшую пользу нестандартые методы могут принести в области прикладной математики. В 1981 г. вышла книга Р. Лутца и М. Гозе “Нестандартный анализ: практическое руководство с приложениями”. В этой книге после изложения основных принципов нестандартного анализа рассматриваются вопросы теории возмущений. В настоящее время нестандартный анализ завоёвывает всё большее признание. Состоялся ряд международных симпозиумов, специально посвященных нестандартному анализу и его приложениям. В течение последнего десятилетия нестандартный анализ (точнее, элементарный математический анализ, но основанный на нестандартном подходе) преподавался в ряде высших учебных заведений США. Линейные операторы Определение и примеры линейных операторов Пусть Е и Е1 – два линейных топологических пространства. Линейным оператором, действующим из Е в Е1, называется отображение y=Ax (x удовлетворяющее условию А( Совокупность DA всех тех х Оператор называется непрерывным, если он любую сходящуюся последовательность переводит в сходящуюся последовательность. Пример 1: Пусть Е – линейное топологическое пространство. Положим Iх=х для всех х Такой оператор I, переводящий каждый элемент пространства в себя, называется единичным оператором. Пример 2: Если Е и Е1 – произвольные линейные топологические пространства и 0х=0 для всех х (здесь 0 – нулевой элемент пространства Е1), то 0 называется нулевым оператором. Непрерывность оператора в первых двух примерах очевидна. Пример 3: Общий вид линейного оператора, переводящего конечномерное пространство в конечномерное: Пусть А – линейный оператор, отображающий n-мерное пространство Rn с базисом е1,е2,…,еn в m-мерное пространство Rm c базисом f1,f2,…,fm. Если х – произвольный вектор на Rn, то х= и, в силу линейности оператора А, Ах= Таким образом, оператор А задан, если известно, во что он переводит базисные векторы е1,е2,…,еn. Рассмотрим разложение векторов Аеi по базису f1,f2,…,fm. Имеем Аеi= Отсюда ясно, что оператор А
определяется матрицей коэффициентов аi j. Образ пространства Rn в Rm
представляет собой линейное подпространство, размерность которого равна,
очевидно, рангу матрицы Пример 4: Пусть А – линейный оператор, отображающий пространство квадратных матриц размерности m на себя. Пространство квадратных матриц размерности m – конечномерное, следовательно, линейный оператор задаётся матрицей размерности m. Таким образом, получается пример, похожий на пример 3, только в роли конечномерного пространства векторов здесь выступает конечномерное пространство квадратных матриц. Линейный оператор, действующий из Е в Е1, называется ограниченным, если он определён на всём Е и каждое ограниченное множество переводит снова в ограниченное множество. Между ограниченностью и непрерывностью линейного оператора существует тесная связь, а именно, справедливы следующие утверждения. Всякий непрерывный оператор ограничен. Если А – ограниченный оператор, действующий из Е в Е1, и в пространстве Е выполнена первая аксиома счётности (если каждая точка топологического пространства имеет счётную определяющую систему окрестностей, т.е. систему окрестностей точки, обладающую следующими свойствами: каково бы ни было открытое множество G, содержащее эту точку, найдётся окрестность из этой системы, целиком лежащая в G), то оператор А непрерывен. То есть, в пространствах с первой аксиомой счётности ограниченность линейного оператора равносильна его непрерывности. Если Е и Е1 – нормированные
пространства, то условие ограниченности оператора А, действующего из Е в Е1,
можно сформулировать так: оператор а называется ограниченным, если он переводит
всякий шар в ограниченное множество. В силу линейности оператора А это условие
можно сформулировать так: А ограничен, если существует такая постоянная С, что
для всякого
Наименьшее из чисел С,
удовлетворяющих этому неравенству, называется нормой оператора А и обозначается
Теорема: Для любого ограниченного оператора А, действующего из нормированного пространства в нормированное,
Определение: Пусть А и В – два
линейных оператора, действующих из линейного топологического пространства Е в
пространство Е1. Назовём суммой А+В оператор С, ставящий в соответствие
элементу х y=Ax+By С=А+В – линейный оператор,
непрерывный, если А и В непрерывны. Область определения Dc есть пересечение DA Если Е и Е1 – нормированные пространства, а операторы А и В ограничены, то С тоже ограничен, причём
Это следует из:
Определение: Пусть А и В – линейные
операторы, причём А действует из пространства Е в Е1, а В действует из Е1 в Е2.
Произведением ВА операторов А и В называется оператор, ставящий в соответствие
элементу х z=B(Ax) из Е2. Область определения DC
оператора С=ВА состоит из тех х Если А и В – ограниченные операторы, действующие в нормированных пространствах, то и оператор С=ВА ограничен, причём Это следует из: Обратный оператор. Обратимость Пусть А – оператор, действующий из Е в Е1, и DA – область определения, а RA – область значений этого оператора. Определение: Оператор А называется
обратимым, если для любого имеет единственное решение. Если А обратим, то каждому Рассмотрим оператор, переводящий конечномерное пространство в конечномерное. Выше было сказано, что он задаётся матрицей коэффициентов. Таким образом, оператор обратим, если обратима матрица коэффициентов, которой он задаётся. А матрица обратима лишь в том случае, если её определитель не равен нулю. То есть матрицы, которые имеют ненулевой определитель, задают обратимый оператор, переводящий конечномерное пространство в конечномерное. Теорема: Оператор Теорема Баноха об обратном операторе:
Пусть А – линейный ограниченный оператор, взаимно однозначно отображающий
банахово пространство Е на банахово пространство Е1. Тогда обратный оператор Теорема: Пусть ограниченный линейный
оператор А0, отображающий банахово пространство Е на банахово пространство Е1,
обладает ограниченным обратным Теорема: Пусть Е – банахово
пространство, I – тождественный оператор в Е, а А – такой ограниченный линейный
оператор, отображающий Е в себя, что норма
Резольвента линейного оператора Определение и примеры резольвенты оператора Рассмотрим оператор А, действующий в (комплексном) линейном топологическом пространстве Е, и уравнение Ах= Решения этого уравнения зависят от
вида оператора уравнение Ах= существует ограниченный оператор оператор Введём следующую терминологию.
Оператор В конечномерном же случае имеется
лишь две первые возможности. Причём, Рассмотрим насколько примеров резольвент операторов. Пример 1: Возьмём оператор, переводящий конечномерное пространство в конечномерное, как было сказано выше, его можно задать матрицей коэффициентов:
С помощью нехитрых преобразований находим обратную матрицу, тем самым резольвенту этого оператора:
здесь хорошо видно, что оператор,
заданный этой матрицей не существует при Пример 2: Рассмотрим линейный
оператор, отображающий пространство непрерывных функций на отрезке [a,b] на
себя. Пусть это будет оператор умножения на функцию g(x). Тогда резольвента
этого оператора запишется в следующем виде: Пример 3: Рассмотрим оператор дифференцирования
на множестве дифференцируемых функций. А:
тогда Резольвентное множество. Спектр Пусть А – оператор, действующий в
В-пространстве. Если Теорема: Резольвентное множество Доказательство: Пусть
Рассмотрим эту дробь как сумму бесконечно убывающей геометрической прогрессии, тогда она представима в виде ряда
Мы предполагали, что
отсюда и следует, что Доказано. Следовательно, спектр, т.е. дополнение этого множества – замкнутое множество, и резольвента аналитична на бесконечности. Следствие: Если
Таким образом, Доказательство: В доказательстве предыдущей теоремы
мы видели, что если Доказано.
Резольвента как функция от А сейчас рассмотрим резольвенту как
функцию от Теорема 5: Пусть Е – банахово
пространство, I – тождественный оператор в Е, а А – такой ограниченный линейный
оператор, отображающий Е в себя, что
Доказательство: Так как
переходя к пределу при
что и означает, что Доказано. Теорема 7. Если А – ограниченный
линейный оператор в банаховом пространстве и Доказательство: Так как, очевидно, что то При Доказано. Из выше доказанной теоремы вытекает разложение резольвенты в ряд Лорана на бесконечности При Аf=Cf, если С – собственное значение,
то и Теорема 8: Для доказательства воспользуемся
теоремой Коши-Адамара, сформулируем её. Теорема Коши-Адамара: Положим Доказательство: Рассмотрим разложение резольвенты в ряд Лорана как степенной ряд:
По теореме Коши-Адамара его радиус сходимости равен числу
Доказано. Уравнение Гильберта: Доказательство: Возьмем
Доказано. Следствие из уравнения Гильберта: Доказательство: Оно вытекает из уравнения Гильберта:
действительно, возьмём Доказано. Теорема 9: Доказательство: Докажем это равенство методом математической индукции, опираясь на предыдущее утверждение: если k=1, то получаем следствие из уравнения Гильберта
Пусть для k=n равенство выполнено, то
есть Докажем, что для k=n+1, оно тоже имеет место: Получили, что если равенство выполняется для n, то оно выполняется и для n+1, то по аксиоме индукции оно выполняется и для всех натуральных чисел, что и требовалось доказать. Доказано. Таким образом, мы получили, что резольвента – функция бесконечно дифференцируемая. Теорема 10: Зная все производные
резольвенты, мы можем разложить её в ряд Тейлора в окрестности точки
Напомним формулу разложения функции в ряд Тейлора:
Введение в нестандартный анализ Что такое бесконечно малые? Один из наиболее принципиальных моментов нестандартного анализа состоит в том, что бесконечно малые рассматриваются не как переменные величины, а как величины постоянные. Достаточно раскрыть любой учебник физики, чтобы натолкнуться на бесконечно малые приращения, бесконечно малые объёмы и т. п. Все эти величины мыслятся, разумеется, не как переменные, а просто как очень маленькие, почти равные нулю. Итак, речь будет идти о бесконечно
малых числах. Какое число следует называть бесконечно малым? Предположим, что
это положительное число Более точное определение бесконечной
малости числа 1< Таким образом, если число Вывод таков: если мы хотим рассматривать бесконечно малые, мы должны расширить множество R действительных чисел до некоторого большего множества *R. Элементы этого нового множества мы будем называть гипердействительными числами. В нём аксиома Архимеда не выполняется, и существуют бесконечно малые числа, такие, что, сколько их не складывай с собой, сумма будет всё время оставаться меньше 1. Нестандартный, или неархимедов, анализ изучает множество гипердействительных чисел *R. Какие требования естественно предъявлять к гипердействительным числам? 1). Чтобы множество
гипердействительных чисел содержало все обыкновенные действительные числа: R 2).Чтобы над гипердействительными числами можно было выполнять обычные операции: любые два гипердействительные числа нужно уметь складывать, умножать, вычитать и делить, причем так, чтобы выполнялись обычные свойства сложения и умножения. Кроме того, нужно уметь сравнивать гипердействительные числа по величине, т.е. решить какое из них больше. Пусть имеется некоторое множество Р,
в нём выделены некоторые элементы 0 и 1 и определены операции сложения,
вычитания, умножения и деления, ставящие в соответствие двум любым элементам
В таком случае множество Р называется
полем. Пусть на поле Р введён порядок, т. е. для любой пары не равных друг
другу элементов если если если если В таком случае говорят, что введенный порядок превращает Р в упорядоченное поле. Упорядоченное поле Р является неархимедовым тогда и только тогда, когда в нём есть положительные бесконечно малые элементы. Упорядоченное поле Р называется расширением поля действительных чисел R, если Р содержит все действительные числа и, кроме того, операции и порядок из Р, рассматриваемые на элементах их R, совпадают с обычными арифметическими операциями и обычным порядком на действительных числах. Пример неархимедовой числовой системы Построим пример неархимедова упорядоченного поля, являющегося расширением поля действительных чисел. Предположим, что искомое расширение *R уже построено, и исследуем его строение. Элементы множества *R мы будем называть гипердействительными числами. Среди них содержатся и все действительные числа. Чтобы отличить их, будем называть действительные числа (элементы R) стандартными, а остальные гипердействительные числа (элементы *R/R)—нестандартными. По нашему предположению, поле *R
содержит бесконечно малые числа, не равные нулю. Гипердействительное число
меньше 1. Здесь через Отметим, что стандартное число 0 также оказывается, согласно этому определению, бесконечно малым. Но все остальные бесконечно малые числа не могут быть стандартными. Это следует из того, что для стандартных чисел справедлива аксиома Архимеда. Наряду с бесконечно малыми в поле *R существуют и бесконечно большие. Мы называем гипердействительное число А бесконечно большим, если
Если, Гипердействительные числа, не
являющиеся бесконечно большими, называются конечными. Каждое конечное
гипердействительное число Обсудив структуру нестандартного “микромира”, скажем несколько слов о строении нестандартного “макромира”. Их можно разбить на классы (“галактики”), каждый из которых устроен, подобно множеству всех конечных гипердействительных чисел. Среди галактик нет ни самой большой, ни самой малой; между любыми двумя галактиками есть бесконечно много других галактик. Что ещё нужно знать о бесконечно малых? Рассмотрим, что получается в результате построения поля гипердействительных чисел. Прежде всего, мы получаем
неархимедово расширение поля действительных чисел. Кроме того, “каждому объекту
стандартного мира” поставлен в соответствие его аналог в “нестандартном мире”.
Именно нестандартным аналогом любого действительного числа является оно само;
любому подмножеству А множества R соответствует подмножество *А множества *R,
каждой функции f из R в R соответствует функция *f из *R в *R, каждой двуместной
функции g из R в R соответствует функция *g из *R в *R и т. д. Разумеется, эти
аналоги *A, *f, *g не произвольны, а должны обладать некоторыми специальными
свойствами: так, *А Приведем два примера “нестандартных определений”
стандартных понятий. Пусть Определение предела. Стандартное
число Определение предельной точки. Стандартное
число А теперь докажем эквивалентность «нестандартного» определения предела последовательности «стандартному», пользуясь принципом переноса: Доказательство:
Применим к этому утверждению принцип переноса, получим: Но бесконечно большие номера будут
удовлетворять этому условию при
Доказано. Рассмотрим ещё один пример:
доказательство равномерной непрерывности функции на отрезке: функция f
равномерно непрерывна на отрезке
Доказательство:
По принципу переноса получается, что
Используя принцип переноса, получаем стандартное описание равномерной непрерывности. Доказано. Рассмотрим доказательство 1ой теоремы Вейерштрасса «нестандартными средствами»: функция, непрерывная на отрезке, является на нём ограниченной. Доказательство: Так как функция f непрерывна, то Это не верно для интервала, так как в
Доказано. Что же такое гипердействительное число? Гипердействительные числа можно рассматривать как классы последовательностей обыкновенных действительных чисел. Рассмотрим способ построения классов. Его определение будет использовать так называемый нетривиальный ультрафильтр на множестве натуральных чисел. Объясним, что это такое. Пусть некоторые множества натуральных чисел называются “большими”, а некоторые – “малыми”, причем выполнены следующие свойства: Любое множество натуральных чисел является либо большим, либо малым. Ни одно множество не является большим и малым одновременно. Дополнение (до N) любого малого множества является большим, дополнение любого большого множества – малым. Любое подмножество малого множества является малым, любое надмножество большого – большим. Объединение двух малых множеств является малым, пересечение дух больших множеств – большим. Всякое конечное множество является малым, всякое множество, имеющее конечное дополнение – большим. С помощью такого ультрафильтра построим искомое неархимедово расширение поля действительных чисел. Будем говорить, что
последовательности Определим сложение и умножение на
гипердействительных числах. Пусть класс Итак, мы ввели на множестве гипердействительных чисел сложение, умножение и порядок. Нетрудно проверить, что мы получили упорядоченное поле, т.е. что во множестве гипердействительных чисел выполняются все обычные свойства сложения, умножения и порядка. Аксиома Архимеда, однако, в этом поле не выполняется. Не знаю, как назвать А теперь посмотрим, как ведут себя расширения операторов. Теорема 1: Доказательство:
Доказано. Теорема 2: Доказательство: Пусть есть операторы А и А1 такие, что
Воспользуемся теоремой: Если оператор Поскольку данные операторы бесконечно
близки, то норма их разности есть число бесконечно малое. А норма оператора А –
конечна, а бесконечно малое число, естественно, меньше числа, обратного конечному,
что гарантирует выполнение неравенства
Доказано. Определение резольвенты в этом поле такое же, как и в стандартном. Но есть некоторое расхождение в определении спектра и собственного вектора. Спектром линейного оператора в
Здесь пользуются определением не собственного вектора, а почти собственного вектора: Когда оператор
![]() Где m – некоторая точка отрезка Таким образом, получили, что Теорема 3: Доказательство:
Доказано. Теорема 4: Доказательство:
Проведём доказательство методом от
противного. Предположим, что число
а, с другой,
получили противоречие. Значит Доказано. Список литературыМ. Девис. Прикладной нестандартный анализ – Москва: Изд-во Мир, 1980 год. А.Н. Колмогоров, С.В. Фомин. Элементы теории функций и функционального анализа. Н. Данфорд, Дж.Т. Шварц. Линейные операторы. И.М. Глазман, Ю.И. Любич. Конечномерный линейный анализ. В.А. Успенский. Что такое нестандартный анализ? – Москва: изд-во «Наука», 1987 |
||
|